

TP65S

CE Department

DEC. 08, 2023

A HOT-SELLING MODEL IN HSG LASER

í**45**6

TP65S

Multi functional Tube Laser Bevel Cutting Machine

Cutting Size:	Φ20-273mm
	□20-200mm
	Side≦273mm
Max Acceleration:	1.2G
Chuck Speed:	120r/min
Machine Speed:	140m/min
Max Tube Weight:	200Kg
Tailing:	220mm

Model: HS-TP65S (3 ~ 4KW)

I.Product Profile

About HS-TP65S

Nesting Software

Mechanical System

Control System

115 Laser Source

Brand	PHOTONICS®	Raycus I-ISIS Edition
Power Range	10%-105%	10%-100% (105% CE)
Module Number	Single/Multiple	Single/Multiple
Wall Plug Efficiency	> 40%	> 40%
Power Stability	± 1%	± 1%
Yearly Attenuation	< 3%	< 3%
Anti-laser reflection	Yes	Yes
Global after-sale police	Yes (Special mode)	Yes
Warranty	YLS 36months YLR 24months	≥12KW 36months

IHSE Laser Source

Strict produce process of Raycus

Step 1:Core compenents check

Inspect whether optical components and electronic components are qualified to ensure material quality

Step 4:Beam combiner install

The core components of the beam combiner are independently developed and manufactured, and the high-quality products meet the requirements

Step 2:Installation process check

In a clean state, ensure that the manufacturing process meets the production requirements according to the precision components

Step 5:Optical lens check

Check whether the end face of the optical fiber is clean to ensure that each optical fiber is at the nanometer level

Step 3:Optical fiber installation

Check the quality of each optical fiber and ensure that the installation process is clean

Step 6:Test before shippment

Each laser source will be tested before delivery to ensure that it meets the factory standard **145** Laser Source

Monitoring softwore of Raycus

0 % Power[%]	41 Power[W]	18 Temperature["C]	Power Ready	Alarm Emission
Control Circuit Alarms Work Time Work time total Emission time total Emission time today Emission time today Program Control Program number 1	Status Signal 1330:23:41 0:2:20 0:2:20 0:0:0 21:49:57 0:0:0 Read Set	Status Interlock1 External con Guide laser Analog cont E-stop REM Power	trol Monitor Mode ration Program mode trol Power slow ris Guide laser ext External Control	Fiber interlock QCW Mode e Bus control ternal control Analog Control
Active Compl Ramping time Rise time 0 m Fall time 0 m Emission Parameter Power 50 % Duty of Frequency 100 Hz Pulse w	s Get s Set ycle 100 % Get idth 10 ms Set	Guide laser OFF Clear Alarm RESET	Power calibration OFF Emission	Bus control ON OFF

- ① Real Time Monitoring
- ② Troubleshooting Easily
- ③ Operation Log Recorde

④Real Time Temerature Monitoring
⑤Real Time Water Flow Monitoring
⑥Real Time Humidity Monitoring

145 Laser Head

-Adopt Japan Optical Technologies

-Spot mode intelligent switching

-High precision polishing technology, low absorption coating scheme

-Design by HSG maintenance and use cost is lower

-Max ±45° beveling angle

The Special Coating Technology

- The coating technology developed in Japan is used to prevent dust and pollution.
- ✓ Good coating makes the beam more concentrated and not easy to burn the lens.
- Normal or cheap protective lens will be exploded when stand long-time high laser power, even casued human safety issue.

High Transmittance

- ✓ Above 99% light transmittance, most laser works for material cutting.
- More stable focus could make the cutting quality better.
- ✓ The lens absorbs less energy, quickly reaches thermal balance, stable cutting in production.

Japan Special Tightness Technology

- 1. Reduce the probability of lens pollution.
- 2. Improve the service life of cutting head.

Double Protective Lenses

- 1. Change the protective lens faster and more convenient in maintenance.
- 2. Low replacement cost in long time production.

Optical

Mechanical

Nesting

Control

Bevel angle ±45°

- ✓ Acceleration is 200rad/s²
- ✓ Postioning accuracy ±0.015
- Beveing cut with round pipe, square pipe, rectangular pipe, channel steel, angle steel, H steel

Optical System

Nesting Software

Mechanical System

Control System

IHSE Nesting software

•	Simulation	NC	Report	₩ Leadins +	⊥⊥ Tab	يني Sort	Weld Kerf	Bevel Supp	<u>کہ</u> Loop Compensation	Quality	★ Properties	Seam Face	Straight Offcut	4 Collision	قير H-shaped steel tenon treatment	0 0	Reverse Break Loop Break Edge	 Slot Edge Cut Split Reverse 	Wrap Sketches Destruct Combine	a≝ Sensor	니 Open Section *	ir n
																						C
										guille a	una internet	Million		_								tr
										~	<u>k</u> s	ax		7			_					С
	•										ion (T		Annual Contraction of the International Contractional Contr						S
																	And	mm ^r				- U

-3D drawing software developed based on Solidworks

Solidworks is an excellent 3D design software. The nesting software based on its secondary development can be very intuitive and convenient to quickly switch between design and nesting.

-Supporting various tube types

Closed tubes: round/ square/ rectangular/ runway/ oval/ triangular/D-shaped tube and other closed-shaped tubes Open tubes: angle/channel/H-beam/I-beam/strip, open rectangle, Tshaped pipe and other open-shaped tubes

-Direct import of assemblies for automatic nesting

Users can directly import the assembly model, and the system will automatically split all the parts and accurately identify the pipe types. In the nesting environment, users can operate all parts, automatically generate tool paths, and complete automatic nesting

145G Nesting software

Automatic Nesting

Part Design

Rich templates library

Parametric draws graphics $(\bigcirc$

Advanced beveling and $(\bigcirc$ chamfering design functios

Part Programming

Automatically/manually generate \bigcirc laser cutting path

Laser cutting simulation

Various technologies for tube (O)design

- Lead in&lead out ٠
- Contour compensation Cutting process layer
- Micro joint
- Manual/Auto sorting Weld surface
- Weld compensation Contour chopped •

Nesting based on length and priority

Import assembly parts then nest directly

Pipe stock list

- Island coedge, weld compensation (\bigcirc) coedge

Optical Nesting Mechanical Control

Part Design Function

holes function

Parts stock, supporting parametric creation of common tubes

³Miter function

<u>k</u> 🖪 🕷	Þ 🕨	۵	NC		V	Ж	4	T	2	<u>گ</u>	Q	×	9	<u>,</u>	Å	bj	🞧 Reverse	🗶 Slot	連 Wrap Sketches 🛛 🛥 Sensor	Ц	🚱 Profiles Stats	i 🕘 🔁
Coordinate Save Config Recognition	Generate Del Path	Simulation	NC Rep	ort Le	eadins	Tab	Sort	Weld Kerf	Bevel Supp	Loop Compensation	Cut Quality	Properties	Seam Face	Straight Offcut	Collision	H-shaped steel	O Break Loop	🖏 Edge Cut	Destruct	Open Section	🐐 Cutting information	Active Exit About
•		•			•	•	•	•	•							tenon treatment	🗍 Break Edge	1 Split Reverse	P Combine	•		

<u>k</u> 🖪 🕷	Þ 🕨	۵	NC		V	Ж	4	T	-	₽	۷	×	\$	·	A	bj	Reverse	📜 Slot	僅 Wrap Sketches 🛛 📹 Sensor	Ц	🚱 Profiles Stats	0 Đ	2
Coordinate Save Config Recognition	Generate Del Path	Simulation	NC Re	port	Leadins	Tab	Sort	Weld Kerf	Bevel Supp	Loop Compensation	Cut Quality	Properties	Seam Face	Straight Offcut	Collision	H-shaped steel	🔿 Break Loop	🖏 Edge Cut	Destruct	Open Section	🐐 Cutting information	Active Exit	About
•		•			•	•	•	•	•							tenon treatment	🗍 Break Edge	🍴 Split Reverse	🎦 Combine	•			

edge material

Auto/manual Lead Line

Lead Setting	s			
Leads Po	sition Default	~		1
Leadin	Line v 2.0	100 🔹 mm	90.000 ≑ °	
Leadout	Line V 3.0	100 🔹 mm	90.000 🔹 °	2
Leadin n	ear the chuck at the end face	e		
Leadin at	Extremes of the end face			
Ignore le	ads at End Loops			
Tab/Overci	ut			/
	End Tab		XX	(
Loop	End Overcut	-	▶┤╸┝	
	0.000 ≑ mm		← →	

Automatic/manual Micro-joint

- Select lead line position
- Lead line type : straight line + arc
- Support undercut or overcut
- Micro-connection specification can be selected by quantity or spacing distance
- Setting of parameter
- · Setting of lead-in and lead-out lines

Optical Nesting Mechanical Control

Automatic/manual Sorting

- · Support for sorting by input region length
- Supports sorting by parts
- Supports sorting by cut type

Normal coedge

Island coedge

Weld compensation coedge

Automatic Nesting Function

2	Num	Part Name	Quantity	Nested	Profile(mm)	Length(mm
~	1	实体1	1	0	RECTANGLE 60X40_R6.4_THK3.2	300.000
~	2	实体2	6	0	CHANNEL 100X48 RAD8.5 THK	500.000
~	3	实体3	1	0	RECTANGLE 60X40 R6.4 THK3.2	455.674
~	4	实体4	1	0	CHANNEL 100X48_RAD8.5_THK	500.000
~	5	实体5	1	0	RECTANGLE 60X40_R6.4_THK3.2	678.992
~	6	实体6	1	0	ROUND D40 THK4.85	80.000
~	7	实体7	4	0	RECTANGLE 40X40_R6.4_THK3.2	394.364
~	8	实体8	1	0	RECTANGLE 40X40_R6.4_THK3.2	1400.000
~	9	实体9	5	0	CHANNEL 100X48_RAD8.5_THK	689.400
~	10	实体10	1	0	RECTANGLE 60X40_R6.4_THK3.2	615.000
~	11	实体11	1	0	CHANNEL 100X48_RAD8.5_THK	500.000
Y	12	实体12	1	0	RECTANGLE 60X40_R6.4_THK3.2	185.000
~	13	实体13	1	0	RECTANGLE 60X40_R6.4_THK3.2	220.000
~	14	实体14	1	0	RECTANGLE 60X40_R6.4_THK3.2	300.000
~	15	实体15	1	0	ROUND D40 THK4.85	80.000
ected	Part	13339.12 mm	Total Part Num	27	Selected Part 27	
Bati	th	Recognize Selected	Recognize No OnPa	rt	Reset Parts Export	

✓ Tube database, stock management

Nesting

✓ Direct import assembly automatic nesting

Mechanical

Control

- ✓ Auto-recognition of part type & quantity
- ✓ Various tube types nested at the same

time

Optical

- ✓ Island coedge/weld compensation coedge
- ✓ Support weld surface selecting
- ✓ Nesting based on length and priority

Optical Nesting Mechanical Control

Tube Database Function

	Tube	Stock									🛛 📧 Add/Chance Stock/Tube	×
C	rrentNe	estingStockLis	AllNestingStockList								x	
	Lock	Tube T	Tube Profile(mm)	Tube Len	Tube Thic	Availa	Used	Total	Priority	Tube Image	< c	
Þ	No	CHANNEL	CHANNEL 100X48_RA RECTANCI E 40X40_R6	6000.000	5.300	9999	2	9999	0			
	No	RECTA	RECTANGLE 60X40_R6	6000.000	3.200	99999	1	9999	0		Tube Type CHANNEL	
	No	ROUND	ROUND D80 THK4.85	6000.000	4.850	9999	1	9999	0		Tube Profiles CHANNEL 100X48_RAD8.5_THK5.3	~
											Tube Length 6000.0	00 🌻 mm
											Tube Thickness 5.3	00 🌩 mm
											ıtity	30 ≑
E											Nesting priority(level 0 highest)	0
											Is Lock	
		Edit	t	Del	Close	Ne	esting priori	ty From S	hort To Long	Default Tube Length(mm) 6000.000 Valida	Change Cancel	

✓ Tube stock list, which can realize tube quantity management and automatically reduce after nesting

✓ Support manual addition and automatic addition of pipe stock

1-15 • Nesting software

- Identify various parts
 automatically
- Avoid collision with cutting path simulation
- Tube stock
 managerment ,count
 cutting quantity
- Improve nesting efficiency ,less time more work
- One key nesting ,less operation more work
- Reasonable nesting algorithm,less waste more work

Optical System

Nesting Software

Mechanical System

Control System

IHSE Carbon structural steel welded bed

Integrated Machine Bed

Carbon structure steel welded bed, integrated pneumatic chuck, beam, cutting head, to ensure stable running

Material: Extra-high Strength Steel

Tensile strength over 500 MPa, increase machine bed worklife.

Process: Full-welding & Stress Free

Full welding process, professional manufacturer process Stress annealing + Vibration Aging + Natural Aging

HSG Processing Procedure of the Bed

Step 1 Welding of Main Frame

Carbon dioxide shielded welding is used. Advantages: stable welding process, no internal defects, least spatter. It has become the most important welding for ferrous metal materials.

Step 4 Vibration Aging

To eliminate the internal residual internal stress. When the vector sum of the residual internal stress and the additional vibration stress in the workpiece exceeds the yield strength of the material through vibration, the material undergoes a small amount of plastic deformation, thereby making the material internal stress relieved.

Step 2 Stress Relief Annealing

Super-large fuel heating an nealing furnace is used to perform 600° stress-relief annealing on multiple main frames at the same time. The furnace temperature is stable and uniform, and the welding stress is completely removed by electronic monitoring, and the quality is guaranteed.

Step 5 Natural Aging

The bed is placed outdoors in the open air for more than 1 month. Improve the rigidity, increase the antideformation ability, and ensure the dimensional stability of the bed.

Step 3 Rough Machining

Quickly removing the blank allowance. As large feed rate and cutting depth as possible to remove as many chips as possible in a short period of time.

Step 6 Machining

The CNC pentahedron machining center is used to process the guide rails, racks and other surfaces that require high precision to obtain a high-quality installation base surface to ensure the cutting accuracy of the machine tool.

High-precision Digital Pneumatic Chuck

Much Larger

-

-

Clamp range from 20 to 273mm, larger than other pneumatic chuck in market, only need change clamper once.

More Stable

Sensor for front/rear chuck opening & clamping , front/rear chuck ventilation function, smokefree cutting and increase chuck working life

High-precision Digital Pneumatic Chuck

- ✓ Digital pneumatic chuck with digital feedback forms a full closed-loop control system.
- ✓ Fast clamping speed, high working efficiency, low starting air pressure (can be less than 0.18MPa), high clamping accuracy;
- Wireless real-time monitoring clamper status, empty clamp alarm, high equipment safety, avoid chuck and part's collision;
- ✓ One-key pressure regulation depending on tube's diameter and thickness;

High-precision Digital Pneumatic Chuck

- Clamp various type tube ,includes round tube ,square tube ,rectangle tube ,oval tube ,I beam ,channer,angel steel,T type tube,and other open type tube
- ✓ Intelligent full-stroke chuck, without manual adjustment, max stand 200kg tube.

IIS Smoke free cutting

- ✓ Remove slag and smoke avoid the dust go into the chuck
- ✓ Meet environment protective requirement Increase chuck worklife

Following Support

Optical Nesting Mechanical Control

- Avoid deformation and shakeness when cutting tube
- Improve feeding efficiency and cutting accuracy
- Share the weight of tube ,decrease the aging of chuck ,increase the working life of chuck

-Wide range of application

Nesting

round, square rectangular tube

-Maximum storage area

3000Kg

Optical

- Max. weight of single tube

120kg

-Loading parameter

 $\varphi 20 \sim \varphi 200 mm$

□20 ~ □140mm

Pipe length

3600 ~ 6500mm

Optical System

Nesting software

Mechanical System

Control System

HSG-X Bus Control System (Touch)

- Simple Operation

The operation interface is intuitive, with rich auxiliary functions, and the operation procedure is simplified

- Stable and efficient

100+ process data automatic matching,machine maintenance automatic management 100+ process data automatic matching on time, efficient and manpower saving

Functional modules

Optical Nesting Mechanical Control

assistance

Real time monitoring

 ✓ Real-time monitoring of cutting power /speed/gas pressure

Nesting

Mechanical

Control

Optical

- Real-time monitoring current coordinates of each motion axis of the machine
- The graphic shows the processing path in real time
- ✓ Show the cutting time and cutting qualtity in real time

Cutting Database

arge	Middle	Small	R Cor	ner	坡口	Pier	ce L1	Pierce L2	Pierce L3	Mark	4 >	
				St	andard	ι	Jser		Desc	ription		Open
R Cor	ner Speed				100		90	RPM/Mir	Preset R (Corner cut	\bigcirc	
R Cor	ner Max Po	ower			900		750	W	Max Lase	r Power w		Save
R Cor	ner Min Po	wer			600	(600	W	Min Lase	Power w		
Laser	Mode			Co	ontinue	Со	ntinue		Laser P	NM Mode		Load
PWM	Freq				5000	5	000	Hz	PWM F	requency		Standard
PWM	Duty				100		100	%	PWN	/ Duty		Load
Gas P	ressure				1.400	1	.400	MPa	Gas Press	ure when		User
Follov	/ Height				1.000	1	.500	mm	nozzle fol	lowing he		
Focus					1.000	-1	000.1	mm	Focus set	ting while		
AW R	apid Speec	l of Round T	ube		100		90	RPM/Mir	the rapid	moving s		
AW C	utting Spe	ed of Round	Tube	1	00.000	60	0.000	RPM/Mir	hthe cuttin	g speed	\cup	
X Axis	Cutting S	peed of Rou	nd Tube		10000	5	000	mm/min	the cuttin	g speed	\subseteq	
Speed	planning	rotation I fac	ctor		0.000	0	.000		Speed pla	nning rot		
File: 4	0X40 T1.00),SS,N2, Noz	zle Single	e 1.5.	xml			Diameter	: 30-50mm			Filo
Power	:3000W	Materi	al:Stainle	ess St	eel Thickr	ness:1.0)mm	Nozzle:JG	il S1.5	Focus:125r	nm	File
	•>	\mathbf{X}			دًا			-	ġ,	÷		?
R	SET	PRODUCE	TECH	1	MANU	AL	DIAGN	IOSE S	SETUP	MAINTAIN		HELP

- ✓ Various cutting parameters, one-click import
- ✓ Detailed cutting parameters includes chamfer, bevel, piece
- ✓ Standard for reference ,User is real parameters

Maintenance

Current	Re	ecords	Statistic										
Maintenand	ce Par	t All		Status	All 🔽				A	ctiveAlm	HistoryAlm		
Index Status			Maintenance C	Content		Maintenance	Part Cycle	Remaining Time	Lev	el Number	Time	Source	Content
1 Expired	Clean t	he NC fi	les in the CNC Contro ad mirror and pozzle	oller		Electric Cabinet	90 days		6	817	2023-01-14 15:47:14	4 nc1	
3 Expired	Check v	whether	the following height	t is correct or i	not	Laser Head	1 days		-0	14	2023-01-14 15:45:45	5 plc	
4 Expired	Check t	the lase	beam center			Laser Head	1 days		6	14	2023-01-14 15:45:4	5 plc	
5 Expired	Drainaç	ge of ga	sholder			Gas	1 days		Ā	14	2023-01-14 15:45:49	5 plc	
6 Expired	Check v	whether	there is noise in the	movement of	f each axis	Tube Machine	1 days			14	2023-01-14 15:45:45	s pic	
7 Expired	Clean u	ip Waste	• • • • • • • • • • • • • • • • • • • •			Unloading Syst	em 1 days			14	2025-01-14 15.45.4	5 pic	
e Expired	Check I	Homina	function	panei		Tube Machine	1 days		U	14	2023-01-14 15:45:43	2 plc	
10 Expired	Check y	whether	the gas pressure is c	correct or not		Gas	1 days		0	14	2022-11-02 14:46:44	4 plc	
11 Expired	Clean f	ront and	back chucks			Chuck	7 days		0	14	2022-11-02 14:46:44	4 plc	
2 Expired	Check t	the cond	entricity of chucks			Chuck	7 days		0	14	2022-11-02 14:46:44	4 plc	
13 Expired	Check v	wether t	he relays are working	g properly		Electric Cabine	: 360 days		6	14	2022-11-02 14:46:43	3 plc	
14 Expired	Clean t	he dust	in the electric cabine	et.		Electric Cabinet	: 360 days		A	14	2022-11-02 14:46:4	1 plc	
15 Expired	Check a	the level	of machine and rent	ons force the foot	of machine	Tube Machine	360 days			14	2022 11 02 14:40.4	1 pic	
17 Expired	Check a	and repl	ace claws of chuck		ormachine	Chuck	360 days			14	2022-08-10 16:25:3	і ріс	
18 Expired	Clean u	ip dust o	of Electric Cabinet			Electric Cabinet	: 30 days			14	2022-08-10 18:25:3	1 plc	
19 Expired	Check v	wether t	he SMC cable of lase	er head is wor	n or not	Laser Head	180 days			14	2022-08-10 18:25:3	1 plc	
20 Eunited	Charles I.												
All	\checkmark							Search	(Current	Records		
Input	/	/alue	Description		Outp	ut value	Des	cription		intonanco	Dart All		Start Time 2000 01 01 5 End Time 2022 02 10
MG STOP		AP1	IOA_B, 11C02-TRUE		X Servo Enabe	e 🥥 .	Axis 1-TRUE		IVIC	intenance	e Part All		
Home		AP1	IOA_A, 12C01-TRUE	(Y Servo Enabe	e 🥥 (Axis 2-TRUE		Inde	ex	Maintenance Cor	ntent	Maintenance Part Cycle Commit Time
Plus Limit		AP1	IOA_A, 11C01-TRUE		Z Servo Enabe	e 🧕 /	Axis 3-TRUE						
Minus Limit		AP1	_IOA_A, 13C01-TRUE	_	A Servo Enabe	e 🥥 /	Axis 4-TRUE						
Home		AP1	IOA_A, 15C01-TRUE		W Servo Enab	ie 🥥 i	Axis 5-TRUE						
Plus Limit		AP1 AP1	_IOA_A, 14C01-TRUE	-	R Servo Enabe	e 🥥 /	Axis 6-TRUE	10 70115					
Minus Limit		AP1	IOA_A, 16C01-TRUE	=	Alarm Reset		AP1_IOB_D, 14C	10-TRUE					
C Home		AP1	_IOA_A, 17C01-TRUE	_	Guide Enable		APT_IOB_D, ISC	10-TRUE					
Minus Limit		AP1	IOA A 19C01 TRUE		Laser Request		APT_IOB_D, 12C						
Home			IOB B 14C05-TPUE		AD1835-REOU	IFST	P1 IOR E 15C11	TRUE					
V Home		AP1	IOB B 13C05-TRUE		AD1835-STRO	BF 🥥	AP1 IOB E 16C1	11-TRUF	=				
Plus Limit		AP1	IOB B. 11C05-TRUE		N2 Valve One	n 🥥	AP1 IOA D. 120	08 TRUE					
Minus Limit		AP1	IOB B. 12C05-TRUE		O2 Valve Ope	n 🥚	AP1 IOA D, 13C	08 TRUE					
Servo Alarm		Axis	1-TRUE		AIR Valve Ope	en 🥥	AP1 IOA D. 14C	08 TRUE	1				
Servo Alarm		Axis	2-TRUE	_									
Servo Alarm		Axis	3-TRUE		Support 2 Up	۹.	AP1 IOA E, 15C	09 TRUE	1				
A Servo Alarm		Axis	4-TRUE		Support 3 Up		AP1 IOA E, 11C	09 TRUE					
		a				-							

Optical Mechanical Control Nesting

II.About HSG

HSG Laser, dated back to 2006, is a hi-tech enterprise that integrates research, development, production and sales of metal forming equipment.

13 13 branches/subsidiaries/ sub-subsidiaries across the globe

100+ Serve 100+countries and regions

21000 Sell 21000 sets globally till now

HSG machines were introduced into Japanese market in Nov. 2020, and were frequently reported by local media.

HSG Laser, dated back to 2006, is a hi-tech enterprise that integrates research, development, production and sales of metal forming equipment.

Manufacturing Bases in China

96000m² Occupied Area

8000+sets of Annual Output

Manufacturing Base in the Northern, China Jinan, Shandong Province

Manufacturing Base in the Yangtze River Delta Region, China Suzhou, Jiangsu Province

Since the establishment, HSG Laser always stress on its independent development of software and hardware and has founded 3 R&D centers, applied for 300+ patents and got multiple quality certifications overseas.

9

R&D Laboratories

Japanese Optical R&D Center

Chinese Optical R&D Laboratory

ASSEMBLY PLATFORMS WITH CE **CERTIFICATION, STRICT IN QUALITY CONTROL FLOW**

COLLIMATOR (bed)

INTERFEROMETER

#