

EMS – Multifaceted Performance with only 30 mm

Eaton Moeller[®] series products have always embodied quality and reliability in the machine building industry. As many know, this applies in particular to our PKZ motor-protective circuit-breakers and DIL contactors, which continue to set new standards to this day. Our new EMS electronic motor starters not only continue with this tradition, but are also a leap into fully electronic motor starters, and therefore a leap into the future.

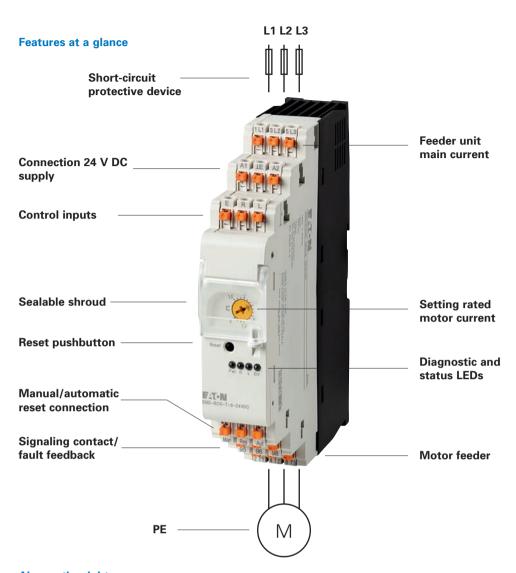
Defining the future.

Trendsetting is simply another word for action. This is why it was only natural for renowned Eaton products such as our DIL contactors and PKZ motor-protective circuit-breakers to be further developed and expanded on.

The result is the new series of PKE motor protection systems with electronic wide-range overload protection for state-of-the-art systems intended to increase machine availability above all.

Motor start from the tiniest space.

With its EMS electronic motor starter, Eaton is setting a new standard by offering a multifunctional motor protection and control relay with a frame width of 30 mm. This electronic motor starter is intended for applications in which motors with a performance range from 0.06 kW to 3 kW need to be reliably driven and protected while using up as little space as possible. Accordingly, four functions have been incorporated into this single switching device:


- DOL starter
- · Reversing starter
- Motor protection as per IEC 60947

 Safety-oriented drive stopping in accordance with category 3 (EN 13849)

This electronic motor starter is mainly intended for applications in which motors have to be controlled and protected in the following systems:

- Logistics systems
 Material handling systems, small elevators
- Packaging machines
- Production machines
- Machine tools

Always the right tripping class.

The electronic motor starter's motor protection is implemented using two different tripping classes. For motor currents greater than 4 A, a Class 10 A time-current curve is used for motor protection. Meanwhile, for motor currents of up to 4A,

a slower Class 10 time-current curve is used for motor protection. This curve prevents the motor protection mechanism from tripping prematurely in the event of frequent start/stop operations or high inrush currents.

10

Overload factor I/IN

Four functions in a single device

DOL start with high contact life

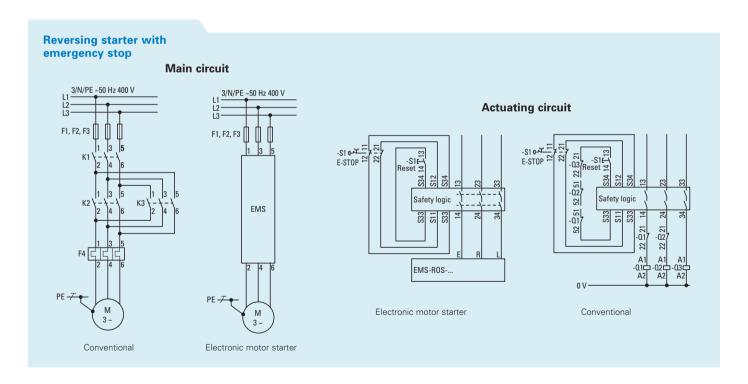
Integrated hybrid switching provides the electronic motor starter with a significantly longer contact life than conventional switching devices. How long is longer? A total of 30 million switching operations.

Motor starter with DOL and reversing capabilities

The electronic motor starters feature an integrated reversing circuit in order to drive motors in the forward and reverse directions. This eliminates the need for additional switching devices.

Emergency-stop actuator

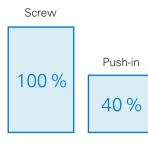
The electronic motor starter can be used to set up safety circuits with a performance level of e or a safety integrity level of 3 without the need for additional switching devices in the main current path.


Integrated motor protection as per IEC 60947

All EMS electronic motor starters come with electronic wide-range overload protection with additional detection of phase unbalances as per IEC 60947. This eliminates the need for additional motor protection elements.

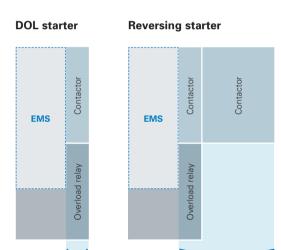
EMS – Complex Functions Made Simple

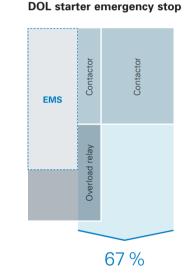
Faster for increased safety

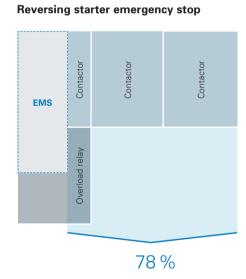

EMS motor starters make it possible to implement applications with safety-oriented stopping in accordance with cat. 3 /SIL 3 and PLe much faster and easier than conventional motor starters.

In addition, wiring is less complex both at the main circuit and actuating circuit levels. In total, installation efforts are reduced by up to 60%, while the number of required hardware components is reduced by 70%.

Time comparison


Smart terminal type


The electronic motor starter relies on push-in terminals for its main circuit and actuating circuit connections. This enables users to connect and disconnect


the connection cables without tools and reduces the time spent wiring the starter up to 60% in comparison to conventional screw terminals. This ensures that you will not only benefit from increased safety, but also from faster, simpler, and clearer handling.

Time is money

Reduce the time it takes to install your motor starters by up to 60%. Tool-less push-in terminals ensure that installation is done in the blink of an eye, enabling you to use your time on more important things.

A frame width reduction of up to 78% in comparison to conventional motor starters.

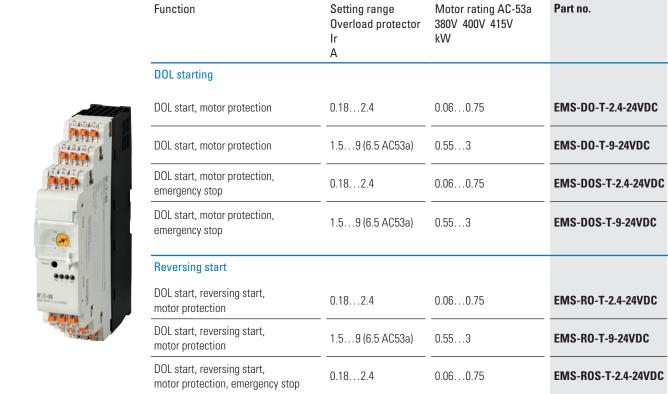
Compact, reliable, safe

30%

A small electronic motor starter frame width of only 30 mm translates into important space savings inside control cabinets. This advantage is particularly important in the case of machines with numerous reversing starters and strict safety requirements (emergency stop), since using these motor starters also makes it possible to eliminate the need for multiple conventional switching devices.

In addition to the space that is freed up, the device's staggered terminals reduce wiring efforts even further. This makes it possible to put together motor starter groups much faster, and the reduction in wiring efforts makes it possible to reduce installation times by 60%.

67 %



Hybrid switching ensures a longer life

The electronic motor starter's integrated hybrid switching increases its life significantly in comparison to conventional switching devices. The semi-conductor connected in parallel to the main contacts handles the current flow during switch-on and switch-off operations, ensuring that the starter will have a longer contact life of 30 million switching operations.

Electronic motor starter EMS

1.5...9 (6.5 AC53a)

0.55...3

Article no.

170099

170100

170103

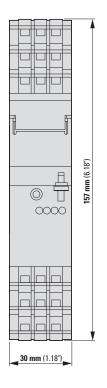
170104

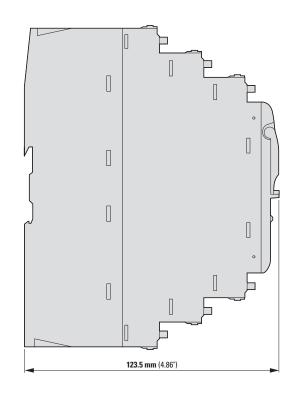
170101

170102

170105

169789


EMS-ROS-T-9-24VDC


Prices see price list

DOL start, reversing start,

motor protection, emergency stop

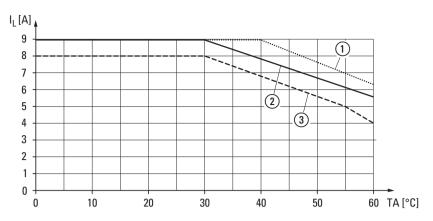
Dimensions EMS

Technical data

General	Standards		IEC/EN 60947-4-2; UL508			
	Dimensions (W x H x D)	mm	30x157x123.5			
	Weight	kg	0.3			
	Mounting	9	Top-hat rail IEC/EN 60715, 35mm			
	Mounting position		Vertical, motor feeder on bottom			
	Degree of protection (IEC/EN 60529, EN		IP20_x			
	50178, VBG 4)					
	Lifespan	Operations	3×10^7			
	Max. switching frequency (50:50 duty cycle)	Operations/h	7200			
Terminal capacity	solid	mm ²	1 x (0.752.5), 1x(AWG2014)			
	Flexible with ferrule	mm²	2 x (0.752.5), 1x(AWG2014)			
	flexible with twin ferrule	mm ²	2 x (0.751.5), 2x(AWG2016)			
			Minimum length 10mm			
Electromagnetic compatibility (EMC)	Electrostatic discharge (IEC/EN 61000-4-2, Level 3, ESD)					
	Air discharge	kV	8			
	Contact discharge	kV	6			
	Electromagnetic fields(IEC/EN61000-4-3)					
	80-1000MHz	V/m	10			
	1.4-2 GHz	V/m	10			
	2-2.7 GHz	V/m	3			
	Emitted interference cable related	V/III	Class A*)			
	(EN 55011)		Class A*			
	Radiated emitted interference (EN 61000-6-3)					
	Burst pulses (IEC/EN 61000-4-4, level 3)	kV	2			
	Surge (IEC/EN 61000-4-5)					
	Symmetric	kV	1			
	asymmetrical	kV	2			
	Radiated RFI (IEC/EN 61000-4-6)	V	10			
Ambient climatic conditions	Operating ambient temperature (IEC 60068-2)	°C	-25+60			
	Condensation		prevent with suitable measures			
	Storage	°C	-40+80			
Input data (EMST-24VDC)	Supply voltage (A1-A2)	VDC	24-20% + 25%			
	Supply voltage "confirm Off"	VDC	<5			
	Residual ripple	%	5			
	Input current (without return signal)	mA	40			
Actuating circuit (ON, L, R)	Switching level "Low"	VDC	-39.6			
totalding off our (only L, II)	Switching level "confirm Off"	VDC	<5			
	Switching level "High"	VDC	19.230			
	Input current	mA	5			
Facility of 100 (07 00)	·					
Feedback outputs (95, 96/97, 98)	Contact type	1440 2 45 5	Single contact, 1 changeover contact			
	Maximum switching voltage	VAC/VDC	250			
	Switching capacity AC-15 (230 VAC)	Α	3			
	Switching capacity DC13 (24 VDC)	Α	2			

^{*)} This product is designed for use in industrial environments (environment 2). Its use in residential environments (environment1) may cause radio-frequency interference, requiring additional noise suppression measures.

Technical data


Switching principle

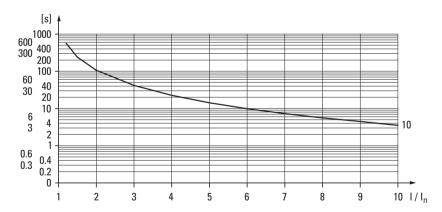
Power section

Power section	SWITCHIN	g principie			Sarety outp	ut stage	with bypass, three-phase disconnect		
	Rated on	erational voltage	VAC		500 (4255	U)			
Rated operational current					300 (42330)				
	EMS	·2,4 160947-4-3)							
	Α		0.152.4	J.152.4					
AC53a (EN60947-4-2)					0.152.4				
	EMS	9							
	А		1.29						
AC51 (EN60947-4-3) AC53a (EN60947-4-2)									
	Α		1.26.5						
	Minimum	n heat dissipation							
	EMS	2,4	W	V 1.1					
	EMS	9	W		1.1				
		at dissipation	14/		0.0				
	EMS		W		3.3				
	EMS	9	W	14.6					
Main circuits	Rated im	pulse withstand voltage	VAC		6000				
iviaiii cii cuits			VAC						
		age category			III				
	Pollution	degree			2				
	Basic ins	ulation (IEC/EN 60947-1)							
Between supply, control, and switching voltages			VAC		500				
		coutput and switching voltage	VAC		500				
			VAC		300				
		ation (IEC/EN 60947-1)							
	Between	supply, control, and switching voltages	VAC		≤300 (e.g. 230/400, 277/480)				
	Feedback	output and switching voltage	VAC		≤300 (e.g. 230/400, 277/480)				
	Safe isol	ation according to EN 50178							
	Between supply, control, and switching voltages				500				
			VAC		500				
	reeuback	coutput and switching voltage	VAC		500				
Ammeter (L1,L3)	Setting ra	ange of overload releases							
, , ,	EMS		А		0.182.4				
	EMS		Α		1.59.0				
			A		1.55.0				
		otection, characteristic							
	$lr \le 4A$				CLASS10				
	Ir > 4A				CLASS10A				
	Recovery	time	Mini	mo 20					
		monitoring							
		de of Imax > Ir (Imax - Imin/Imax)	%		≥33/≥67				
	_								
	_	de of Imax < Ir (Imax - Imin/Irated)	%		≥33/≥67				
	Pick-up ti	ime	S		120/1.8				
Ctall protection	I (L1) or I	(1.2)	А		>45A				
Stall protection									
(EMS9)	Pick-up ti	ime	S		2				
Short-circuit	50kA/500	IVAC.			Fuse 16A gC	i/al			
strength type of	001 1, 001					-7 9-			
coordination 1									
							Motor protection EMS-D0, EMS-		
Safety engineering		Safe switch off (EMS-DOS EMS-ROS	.)						
Safety engineering		Safe switch off (EMS-DOS, EMS-ROS	.)				RO		
	Years		.)	MTTFd		Years	RO		
MTTFd	Years	127	.)	MTTFd λsd [FIT]		Years	RO 101		
MTTFd λsd [FIT]	Years	127 193	.)	λsd [FIT]		Years	RO 101 0		
MTTFd λsd [FIT] λsu [FIT]	Years	127 193 5205	.)	λsd [FIT] λsu [FIT]		Years	RO 101 0 4794		
MTTFd Asd [FIT] Asu [FIT] Add [FIT]	Years	127 193 5205 893	.)	λsd [FIT] λsu [FIT] λdd [FIT]		Years	RO 101 0 4794 1002		
MTTFd Asd [FIT] Asu [FIT] Add [FIT] Adu [FIT]		127 193 5205 893 8.07	.)	λsd [FIT] λsu [FIT] λdd [FIT] λdu [FIT]			RO 101 0 4794 1002		
MTTFd Asd [FIT] Asu [FIT] Add [FIT] Adu [FIT] SFF	%	127 193 5205 893 8.07 99.9	.)	λsd [FIT] λsu [FIT] λdd [FIT] λdu [FIT] SFF		%	RO 101 0 4794 1002 130 98		
MTTFd Asd [FIT] Asu [FIT] Add [FIT] Adu [FIT] SFF DCS	%	127 193 5205 893 8.07 99.9 3.5	.)	λsd [FIT] λsu [FIT] λdd [FIT] λdu [FIT] SFF DCS		%	RO 101 0 4794 1002 130 98		
MTTFd Asd [FIT] Asu [FIT] Add [FIT] Adu [FIT] SFF DCS DC	%	127 193 5205 893 8.07 99.9 3.5	.)	λsd [FIT] λsu [FIT] λdd [FIT] λdu [FIT] SFF		%	RO 101 0 4794 1002 130 98		
MTTFd Asd [FIT] Asu [FIT] Add [FIT] SFF DCS DC	%	127 193 5205 893 8.07 99.9 3.5	.)	λsd [FIT] λsu [FIT] λdd [FIT] λdu [FIT] SFF DCS		%	RO 101 0 4794 1002 130 98		
MTTFd \[\lambda sd [FIT] \] \[\lambda sd [FIT] \] \[\lambda dd [FIT] \] \[\lambda du [FIT] \] \[\lambda SFF \] \[\lambda CS \] \[\lambda C \] \[\lambda CS \] \[\lambda C \] \[\lambda CS \] \[\lambda	%	127 193 5205 893 8.07 99.9 3.5 99 8.07 x 10-9	.)	Asd [FIT] Asu [FIT] Add [FIT] Adu [FIT] SFF DCS DC		%	RO 101 0 4794 1002 130 98 0		
MTTFd \[\lambda sd [FIT] \] \[\lambda su [FIT] \] \[\lambda du [FIT] \] \[\lambda du [FIT] \] \[\lambda SFF \] \[\lambda CS \] \[\lambda CC \] \[\lamb	%	127 193 5205 893 8.07 99.9 3.5 99 8.07 x 10-9	.)	λsd [FIT] λsu [FIT] λdd [FIT] λdu [FIT] SFF DCS	1	%	RO 101 0 4794 1002 130 98		
MTTFd Asd [FIT] Asu [FIT] Add [FIT] Adu [FIT] DCS DC PFH Sicherheitslevel IEC 61508-1 ISO 13849-1 EN 954-1	%	127 193 5205 893 8.07 99.9 3.5 99 8.07 x 10-9	.)	Asd [FIT] Asu [FIT] Add [FIT] Adu [FIT] SFF DCS DC	1	%	RO 101 0 4794 1002 130 98 0		

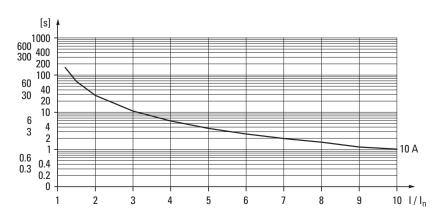
Safety output stage with bypass, three-phase disconnect

Derating rated operational current EMS-...-9-...

- 1 Stand-alone device
- 2 Connected in series, with a distance equal to one housing width (30 mm)
- 3 Connected in series, without any distance


Engineering rated operational current

Derating curve EMS9										
Utility category	AC-51							AC-53a		
Overcurrent factor I _A /I _N	1	2	3	4	5	6	7	8	9	10
Adjustment factor K	1	1	1	1	1	0.96	0.83	0.72	0.64	0.58


Example 1		
Motor with overcurrent factor (from motor data sheet)	I_A/I_N	8
Adjustment factor	K	0.72
Max. permissible load current at 30° C, not connected in series	<i>I</i> _L	9A
Max. permissible rated operational current	I _N	6.5A

Example 2		
Motor with overcurrent factor (from motor data sheet)	I_A/I_N	8
Adjustment factor	K	0.72
Max. permissible load current at 60° C, connected in series	<i>I</i> _L	4A
Max. permissible rated operational current	I _N	2.88A

Trip type EMS

EMS-...-2,4-... EMS-...-9-...($Ir \le 4A$)

EMS-...-9-...(Ir > 4A)

Eaton is dedicated to ensuring that reliable, efficient and safe power is available when it's needed most. With unparalleled knowledge of electrical power management across industries, experts at Eaton deliver customized, integrated solutions to solve our customers' most critical challenges.

Our focus is on delivering the right solution for the application. But, decision makers demand more than just innovative products. They turn to Eaton for an unwavering commitment to personal support that makes customer success a top priority. For more information, **visit www.eaton.com/electrical**.

To contact an Eaton salesperson or local distributor/agent, please visit www.eaton.eu/electrical/customersupport

Changes to the products, to the information contained in this document, and to prices are reserved; so are errors and omissions. Only order confirmations and technical documentation by Eaton is binding. Photos and pictures also do not warrant a specific layout or functionality. Their use in whatever form is subject to prior approval by Eaton. The same applies to Trademarks (especially Eaton, Moeller, Cutler-Hammer). The Terms and Conditions of Eaton apply, as referenced on Eaton internet pages and Eaton order confirmations.

Eaton Industries GmbH Hein-Moeller-Str. 7–11 D-53115 B onn/Germany

© 2013 by Eaton Corporation All rights reserved Printed in Germany 03/13 Publication No.: BR034001en ip March 2013 Article No.: 171852

Eaton is a registered trademark of Eaton Corporation

All other trademarks are property of their respective owners.

 $\label{eq:smartWire-DT} SmartWire-DT^{\scriptsize\textcircled{\tiny{0}}} \ is \ a \ registered \ trademark \ of Eaton \ Corporation.$

