

World Class Bearing Technology

deva.tex[®] sliding bearings Maintenance-free, self-lubricating

FEDERAL-MOGUL POWERTRAIN

deva.tex[®]

High performance material – PTFE sliding layer on glass-fibre reinforced carrying layer

Contemporary designs represent an enormous challenge for modern-day bearing materials. Zero maintenance is often expected under severe to extreme conditions as well as under maximum loads.

The constant pressure on costs also calls for increasing uptime of machinery and equipment and uncompromising standards of operational reliability.

deva.tex materials are suitable for applications involving sustained high static and dynamic loads, relatively low sliding speeds and rotary, angular, axial or linear motion. They are also suitable for applications where conventional lubrication is not possible or permissible, or where other properties are required such as durability and resistance to operational and environmental influences or special conditions (e.g. impact load, abrasive stress, etc).

Our bearing service

- Profit from more than 60 years of experience in selflubricating sliding bearings.
- Make use of our extensive material and application expertise spanning a very wide range of industries.
- Let our application engineering team assist you in the:
 - selection of the bearing materials,
 - design, purpose-built to your requirements,
 - assembly and installation,
 - calculation of estimated life time.

- Benefit from the latest material developments, tested using state of the art facilities.
- Ask for a simulation of your bearing application on our test rigs.
- Expect the highest quality standards, certified to DIN ISO 9001:2008, ISO/TS 16949:2009 and DIN EN ISO 14001:2004.

Content

		page
1	Materials	4
2	Material structure	4
3	Material properties	6
4	Mating materials	9
5	Fits	10
6	Designs	10
7	Installation	13
8	Standard dimensions	17
9	Data relevant to the design of DEVA [®] bearings	19

FEDERAL-MOGUL POWERTRAIN

Materials

deva.tex[®] 532

deva.tex[®] 541

Base: Solid lubricants-filled epoxy resin sliding layer and glass-fibre filled backing

deva.tex 532 sliding plates consist of two layers combining the excellent bearing properties of a low-friction sliding layer with the high strength of a load carrying glass-fibre filled backing. The sliding layer consists of an epoxy resin filled with solid lubricants, designed to ensure good tribological properties. deva.tex 532 sliding plates have extremely good friction properties.

Solid lubricants-filled epoxy resin sliding monolayer

deva.tex 541 sliding plates consist of only sliding layer combining the excellent bearing properties of a low-friction surface. The sliding layer containing a special type of fibres in an epoxy resin matrix with structurally embedded solid lubricants, designed to ensure excellent tribological properties.

2

Material structure

deva.tex® 542

Base: Solid lubricants-filled fibre reinforced epoxy resin sliding layer and glassfibre filled backing

deva.tex 542 sliding plates consist of two layers combining the excellent bearing properties of a low-friction sliding layer with the high strength of a load carrying glass-fibre filled backing. The fibre reinforced sliding layer consists of an epoxy resin filled with solid lubricants, designed to ensure good tribological properties. The outer layer is characterized by a glass-fibre reinforced epoxy resin matrix for optimum load capability.

deva.tex[®] 552

Base: High temperature epoxy resin filament wound bearing

deva.tex 552 is a self-lubricating material consisting of two layers. The inner sliding layer is made of a special type of fibre containing lubricants. The fibres are embedded in an epoxy resin matrix with graphite as additional lubricant for high load capability, providing low wear rates in dry and wet conditions. The outer layer is characterised by a glass-fibre reinforced epoxy resin matrix with the high strength of an aligned glass fibre wound structure.

Microsection deva.tex 542 Microsection deva.tex 552 2 2 1 1 5 %. 1 Carrying layer: continuous glass-fibre 1 Wound glass-fibre embedded in a embedded in a high temperature high temperature epoxy resin matrix epoxy resin matrix 2 Sliding layer: High-strength, wound 2 Sliding layer: a special type of epoxy fibres with solid lubricant embedded in resin matrix with structurally a high temperature epoxy resin matrix embedded solid lubricants.

© Federal-Mogul DEVA GmbH – The current version of this handbook can be found on our website.

Material properties

3.1 Composition and properties

deva.tex 532	Physical and med	Physical and mechanical properties ¹⁾						Bearing properties		
	Density	Linear coefficient of thermal expansion	Thermal conductivity factor	Compres strength	sive 2)	Permissible loa	ad	Sliding speed		
				sliding layer	backing layer	static	dynamic	dry		
Symbol Unit	ρ g/cm³	α ₁ 10 ⁻⁶ /K	λ W/mK	σ, M	^{max} IPa	p _{stat/max}	p _{dyn/max} Pa	U _{max} m/s		
Sliding plates	2.0	13	0.4	120	220	100	60	0.1		

 $^{\eta}\text{Current}$ properties and values can be found in the DEVA® material data sheets, which are available on request.

2) Backing layer

deva.tex 541	Physical and med	hanical properties ¹⁾		Bearing properties							
	Density	Young's modulus	Tensile strength	Compressive strength	Permissible loa	ad	Sliding speed				
					static	dynamic	dry				
Symbol	ρ	E _{min} (DIN 53452)			P _{stat/max}	P _{dyn/max}	U _{max}				
Unit	g/cm³	MPa	MPa	MPa	M	Pa	m/s				
					1						
Sliding plates	1.8	ca. 2500	65	150	150	75	0.1				
¹⁾ Current properties and w which are available on re	"Current properties and values can be found in the DEVA® material data sheets, which are available on request.										

²⁾Backing layer

deva.tex 542	Physical and mechanical properties ¹⁾								Bearing properties		
	Density	Young's mo	dulus	Tensile str	ength	Compres strength	sive	Permissible loa	ad	Sliding speed	
		sliding layer	backing layer	sliding layer	backing layer	sliding layer	backing layer	static	dynamic	dry	
Symbol	ρ	E _{min} (DIN	53452)					p _{stat/max}	p _{dyn/max}	U _{max}	
Unit	g/cm³	M	Ра	M	IPa	M	Pa	M	Pa	m/s	
Sliding plates	2.0	4100	18000	65	200	150	220	150	75	0.1	
¹⁾ Current properties and which are available on re	¹ Current properties and values can be found in the DEVA® material data sheets, which are available on request.										
² Racking layor											

раскінд ідуе

deva.tex 552	Physical and med	chanical properties ¹⁾	Bearing properties								
	Density	Linear coefficient	Thermal	Radial crushing	Permissible loa	ad	Sliding speed				
		of thermal expansion	conductivity factor	strength ²⁾			51				
					static	dynamic	dry				
Symbol	ρ	α,	λ	σ _{max}	P _{stat/max}	P _{dyn/max}	U _{max}				
Unit	g/cm³	10 ⁻⁶ /K	W/mK	MPa	M	Pa	m/s				
Cyl. bearings	2.0	13	0.3	415	230	140	0.20				
¹⁾ Current properties and v which are available on re	"Current properties and values can be found in the DEVA* material data sheets, which are available on request.										

²⁾Backing layer

Bearing prope	rties						deva.tex 532	Table 3.1.1.A
pŪ value		Temperature range ³⁾		Friction coefficient ⁴⁾		Shaft hardness ⁵⁾	Shaft surface finish	
dry	static	min.	max.	dry	in water	min.	optimal	
pU	max	T _{min}	T _{max}	f	f		R _a	Symbol
MPa	× m/s	°C		μ		HB	μm	Unit
0.9	0.9	-40	75	0.03 - 0.15	0.05 - 0.16	180	0.4 - 1.0	Sliding plates
³⁾ Values do not apply in continuous operation.		⁴⁾ The stated slid actual applica	ling friction coefficients ar tion of our products and t	e not guaranteed properti heir service environment. \	es. They have been determ We offer customer-specific	nined on our test rigs using fiel friction and wear tests on req	d-proven parameters that do no uest.	ot necessarily reflect the

⁵⁾In the presence of abrasive contamination and temperatures above 100 °C a hardness of 220 HB is recommended

Bearing prope	earing properties deva.tex 541 Table 3.1.1.B										
p̄U value		Temperature range ³⁾		Friction coefficient ⁴⁾		Shaft hardness ⁵⁾	Shaft surface finish				
dry	in water	min.	max.	dry	in water	min.	optimal				
p U _{max}		T _{min}	T _{max}	f	f		R _a	Symbol			
MPa	× m/s	°C		μ		HB	μm	Unit			
1.2	0.9	-60	80	0.06 - 0.25	0.08 - 0.27	180	0.4 - 1.0	Sliding plates			
³⁾ Values do not apply in continuous operation. ⁴⁾ The stated s actual applie			ding friction coefficients an tion of our products and t	e not guaranteed properti heir service environment. \	es. They have been detern Ne offer customer-specific	nined on our test rigs using fiel friction and wear tests on req	d-proven parameters that do no uest.	ot necessarily reflect the			
		⁵⁾ In the present	e of abrasive contamination	on and temperatures above	100 °C a hardness of 220) HB is recommended					

Bearing prope	erties						deva.tex 542	Table 3.1.1.C		
pŪ value		Temperature range ³⁾		Friction coefficient ⁴⁾		Shaft hardness ⁵⁾	Shaft surface finish			
dry	in water	min.	max.	dry	in water	min.	optimal			
pU	max	T _{min}	T _{max}	f	f		R _a	Symbol		
MPa	× m/s	°C		μ		HB	μm	Unit		
1.2	0.9	-60	80	0.06 - 0.25	0.08 - 0.27	180	0.4 - 1.0	Sliding plates		
³⁾ Values do not apply in continuous operation. ⁴⁾ The		⁴⁾ The stated slic	ling friction coefficients and t	re not guaranteed properti	es. They have been detern	nined on our test rigs using fiel	d-proven parameters that do no	t necessarily reflect the		
	actual application of our products and their service environment. We offer customer-specific friction and wear tests on request. ⁹ In the presence of abrasive contamination and temperatures above 100 °C a hardness of 220 HB is recommended									

Bearing propertiesdeva.tex 552Table										
pŪ value		Temperature range ³⁾		Friction coefficient ⁴⁾		Shaft hardness ⁵⁾	Shaft surface finish			
dry	in water	min.	max.	dry	in water	min.	optimal			
P U _{max}		T _{min}	T _{max}	f	f		R _a	Symbol		
MPa	× m/s	°C		μ		HB	μm	Unit		
1.5	1.5	-60	160	0.03 - 0.12	0.04 - 0.13	180	0.4 - 1.0	Cyl. bearings		
³⁾ Values do not apply in	continuous operation.	⁴⁾ The stated slic actual applica	⁴ The stated sliding friction coefficients are not guaranteed properties. They have been determined on our test rigs using field-proven parameters that do not necessarily reflect the actual application of our products and their service environment. We offer customer-specific friction and wear tests on request.							
		⁵⁾ In the presend	ce of abrasive contamination	on and temperatures above	e 100 °C a hardness of 220) HB is recommended				

3.2 Chemical resistance

deva.tex[®] sliding bearings are highly resistant to corrosive environments. Table 3.2.1 provides an overview of their possible applications in various media at room temperature. Their suitability for use with other media and chemicals should be checked in a resistance test according to DIN 50905 or ASTM D543.

Chemical resistance of deva.tex

Medium	532	541	542	552
Alcohols				
Amyl alcohol	√	✓	✓	✓
Ethyl alcohol	✓	~	~	✓
Ethylene glycol	\checkmark	\checkmark	~	✓
Hydroxy acetone	✓	✓	✓	~
Isobutyl alcohol	\checkmark	\checkmark	\checkmark	✓
Isopropyl alcohol	✓	✓	1	~
Methyl alcohol	\checkmark	\checkmark	\checkmark	\checkmark
Propyl alcohol	✓	✓	✓	~
Allyl alcohol	×	×	×	×
Butyl alcohol	×	×	×	×
Solvents				
Acetone	✓	1	1	~
Methyl ethyl ketone		· ·	· ·	· ·
Nanhtaline	, ,		· ·	×
Toluono	·	·	· ·	
Ronzono	~	~	~	~
Chloromothana	~	~	~	~
Trichloroothana	~	~	~	~
Inchioroethane	~	^	^	~
Fuels				
Petrol	\checkmark	✓	✓	✓
Diesel fuel	\checkmark	\checkmark	✓	✓
Kerosene	\checkmark	✓	✓	✓
Oils				
Cotton seed oil	\checkmark	~	~	✓
Crude oil	✓	✓	 ✓ 	✓
Gear oil	\checkmark	\checkmark	\checkmark	✓
Hydraulic oil	✓	✓	✓	✓
Linseed oil	\checkmark	\checkmark	\checkmark	✓
Motor oil	✓	✓	✓	✓
Gases				
Acetylene	√	✓	✓	\checkmark
Ether	1	1	1	×
Butane	1	1	1	1
Natural gas	✓	1	1	1
Carbon dioxide	\checkmark	✓	\checkmark	\checkmark
Ozone	✓	1	1	1
Propane	✓	1	✓	✓
Sulphur dioxide	✓	1	1	 ✓
Nitrogen	✓	1	1	✓
Hydrogen	✓	1	1	 ✓
Bromine	×	×	×	×
Chlorine	×	×	×	×
Fluorine	×	×	×	×

				Table 3.2.1
Medium	532	541	542	552
Salts				
Ammonium chloride	✓	✓	√	✓
Ammonuim nitrate	~	✓	✓	✓
Ammonium sulphate	~	✓	\checkmark	\checkmark
Iron chloride	✓	✓	√	✓
Calcium chloride	√	√	√	\checkmark
Magnesium chloride	✓	✓	√	✓
Magnesium carbon.	√	√	√	\checkmark
Magnesium sulphate	✓	√	√	\checkmark
Sodium acetate	~	\checkmark	\checkmark	\checkmark
Sodium bisulphate	√	√	√	✓
Sodium carbonate	✓	\checkmark	\checkmark	\checkmark
Acids 10%				
Boric acid	✓	√	√	\checkmark
Acetic acid	~	~	~	✓
Hydrochloric acid	✓	√	√	\checkmark
Sulphuric acid	~	~	~	✓
Citric acid	 ✓ 	\checkmark	\checkmark	\checkmark
Arsenic acid	×	×	×	×
Hydroflouric acid	×	×	×	×
Carbonic acid	×	×	×	×
Nitric acid	×	×	×	×
Bases				
Ammonium hydrox.	✓	√	√	\checkmark
Potassium hydroxide	✓	✓	√	✓
Calcium hydroxide	 ✓ 	\checkmark	\checkmark	\checkmark
Magnesium hydrox.	✓	✓	\checkmark	✓
Sodium hydroxide	✓	\checkmark	\checkmark	✓
Others				
Ethylene glycol	✓	√	√	\checkmark
Formaldehyde	1	~	\checkmark	\checkmark
Freon	✓	✓	\checkmark	\checkmark
Calcium oxide	1	✓	✓	\checkmark
Sodium nitrate	✓	✓	\checkmark	\checkmark
Water 20 °C	✓	✓	\checkmark	✓
Zinc sulphate	✓	✓	\checkmark	\checkmark
Ammonia	×	×	×	\checkmark
Steam > 100 °C	×	×	×	×

4

Mating material

deva.tex sliding materials require the use of a mating material with a hardness of at least 180 HB. In the case of abrasive environments, a hardened mating surface should be used. The surface roughness when using deva.tex should ideally have a R_a value = 0.4 to 1.0 µm. Increased surface roughness leads only to a slightly higher wear rate. However, a decreased deviation, for example $R_a < 0.4$ could lead to significant failure.

The roughness can for example be generated by grinding or abrasive blasting. The grinding ridges should preferably run transversely to the sliding direction. The corrosion resistance required from the mating material should be determined according to the relevant operating conditions. The adjacent table provides an overview of some possible mating materials.

Mating materials for standard applications								
	Material number	DIN designation	Comparable standards					
			USA – ANSI	GB – B.S. 9 70	F – AFNOR			
	1.0543	ZSt 60-2	Grade 65	55C	A60-2			
	1.0503	C45	1045	080M46	CC45			
	1.7225	42CrMo4	4140	708M40	42CD4			

Mating materials for corrosive environments Tab							
	Material number	DIN designation	Comparable standards				
			USA – ANSI	GB – B.S. 9 70	F – AFNOR		
	1.4021	X20Cr13	420	420537	Z20C13		
	1.4057	X17CrNi-16-2	431	432529	Z15CN16.02		
	1.4112	X90CrMoV18	440B	-	(Z70CV17)		
	1.4122	X35CrMo17-1	-	-	-		

Mating materials for seawater applications						
	Material number	DIN designation	Comparable standards			
			USA – ANSI	GB – B.S. 9 70	F – AFNOR	
	1.4460	X3CrNiMoN27-5-3	329	-	-	
	1.4462	X2CrNiMoN22-5-3	UNS531803	318513	Z3CND24-08	
	2.4856	Inconel 625	-	-	-	

Fits

5

Recommended fitting and tolerance ranges						
	Fits	is .				
	Standard	Precision				
Housing bore	H7	H7				
Bearing bore (after installation)	D11	D8 E81)	H8 ¹⁾			
Shaft	h8	h7	d7 e7			
$^{\rm t)} Exception for diameter \leq 40$ mm: Quality IT9						

- deva.tex[®] is pressed into the housing with an interference fit by means of screw press, hydraulic press or press mandrel. Tapping or driving into place is not permissible.
- Standard housing bore is H7
- Average roughness of housing: R_a = 3.2 μm
- The housing should be provided with a 20° 40° chamfer for an easier installation.
- Higher precision standards (IT7 or better) can be achieved by machining the bearing bore after installation. For this purpose, deva.tex can be produced with a machining allowance.

6

Designs

6.1 Design examples

1a) Sliding plate for radial segment

deva.tex guide vane bearing, water turbine

deva.tex rotary sliding connection in railway vehicles

6.2 Description what values to be considered for design

DEVA® differentiates load cases (0 to 3) regarding the character of load stressing a bearing. This is to consider fatigue influences in case of dynamic pressure. The percentage values are refering to the limit values described in the material data sheet or technical handbooks. This worksheet is related to **DEVA** work instruction A 616 (see also "Qualitäts-, Umwelt- und Arbeitsschutz-Management Handbuch, Verfahrensanweisungen + Arbeitsanweisung").

7

Installation

7.1 Installation of cylindrical deva.tex[®] bearings

7.2 Installation of deva.tex[®] sliding plates

7.3 Installation of deva.tex[®] sliding bearings by supercooling

deva.tex precision bearings with inside diameters of 150 mm and above can also be installed by supercooling in liquid nitrogen.

Standard dimensions

Cylindrical bearings

8.1 Standard dimensions for deva.tex[®] 552 cylindrical bearings

Standa	ird nomin	al dimensio	ns deva.tex	552 cylin	drical be	arings	;					Table 8.1
D ₁	D ₂	B ₁	D ₁	D ₂	B ₁		D ₁	D ₂	B ₁	D ₁	D ₂	B ₁
mm	mm	mm	mm	mm	mm		mm	mm	mm	mm	mm	mm
16	20	15	50	58	50		90	105	110	150	165	130
16	20	20	50	58	60		90	105	120	150	165	150
20	24	15	55	63	40		95	110	75	150	165	180
20	24	20	55	63	50		95	110	95	160	180	120
20	24	25	55	63	55		95	110	100	160	180	130
22	26	15	55	63	70		95	110	115	160	180	150
22	26	20	60	70	40		100	115	80	160	180	160
22	26	25	60	70	45		100	115	90	160	180	180
25	30	20	60	70	50		100	115	100	180	200	120
25	30	25	60	70	60		100	115	120	180	200	140
25	30	30	60	70	75		100	115	130	180	200	180
25	30	40	65	75	50		110	125	85	180	200	200
28	34	20	65	75	60		110	125	100	180	200	220
28	34	30	65	75	65		110	125	110	200	220	180
28	34	35	65	75	80		110	125	120	200	220	200
28	34	40	70	80	40		110	125	135	220	240	1)
30	36	25	70	80	55		120	135	90	230	250	1)
30	36	30	70	80	70		120	135	100	240	260	1)
30	36	35	70	80	85		120	135	120	250	270	1)
30	36	40	75	85	50		120	135	130	260	280	1)
35	41	30	75	85	60		120	135	150	280	300	1)
35	41	35	75	85	75		130	145	100	300	330	1)
35	41	40	75	85	90		130	145	120	320	350	1)
35	41	50	80	90	60		130	145	130	330	360	1)
40	48	20	80	90	70		130	145	150	340	370	1)
40	48	30	80	90	80		130	145	160	350	380	1)
40	48	40	80	90	90		140	155	100	380	410	1)
40	48	50	80	90	100		140	155	110	400	430	1)
45	53	35	85	95	65		140	155	120	420	450	1)
45	53	45	85	95	85		140	155	130	440	480	1)
45	53	50	85	95	100		140	155	140	450	490	1)
45	53	55	85	95	105		140	155	150	480	520	1)
45	53	60	90	105	70		140	155	170	500	540	1)
50	58	30	90	105	80		150	165	100			
50	58	40	90	105	90		150	165	120			
Further size	es available on r	equest. Machini	ing allowance for pre	ecision bearing	s on request.	1) \	Nidth on reques	t				

The sliding layer consists of wound fibre with embedded solid lubricant. Machined surface for precision bearings. Deburring by friction grinding. Lead-in chamfer can be produced by mechanical machining. Due to residual stresses, measurement of roundness and tolerances can only be performed after installation into housing or ring gauge.

Standard dimensions for sliding layer thicknesses						
D ₁ S _L						
mm	mm					
≤ 50	min. 0.6					
≤ 100	min. 1.0					
≤ 200	min. 1.5					
≤ 300	min. 2.0					
≤ 400	min. 2.75					
≤ 500	min. 3.5					

Special dimensions – Possible sliding layer thicknesses							
Minimum wall thickness: wall thickness = $D_1 \times 0.03 + 0.8$							
D ₁ S _L							
mm mm							
< 100							
≤ 100 max. 1.5							
≤ 200 max. 3.0							
≥ 200 max. 3.5							

8.2 Producible dimensions for deva.tex[®] 532 sliding plates

deva.tex 532 Sliding plates

Dim. of deva.t		Table 8.2.1						
1)	W ¹⁾	S 1)	s					
- mm	mm	mm		mm				
965 ±0.1	245 ±0.1	5		1				
965 ±0.1	245 ±0.1	6.0		1.5				
965 ±0.1	245 ±0.1	8		1.5				
965 ±0.1	245 ±0.1	10		2				
¹⁾ Further sizes available $S_s = Wall thickness S_L = Sliding layer thi$	⁹ Further sizes available on request. $S_c = Wall thickness$ $S_L = Sliding layer thickness$							

8.3 Producible dimensions for deva.tex[®] 542 sliding plates

Dimensions of deva	Table 8.3.1					
L ¹⁾	W ¹⁾	S _S ¹⁾				
mm	mm n		mm			
1050 ±0.15	625 ±0.15	2 - 100				
¹⁰ Further sizes available on request.						

8.4 Producible dimensions for deva.tex[®] 541 sliding plates

Dimensions of deva	Table 8.4.1					
L ¹⁾	W ¹)	S _L min. ¹⁾				
mm	mm	n	nm			
1250 ±0.3	1050 ±0.3	1 - 100 ±0.25				
¹⁾ Customized dimensions of deva.tex 541 sliding plates are available on request						

8.5 Basic forms

deva.tex® 532

deva.tex® 541

deva.tex[®] 542

deva.tex® 552

9

Data relevant to the design of DEVA® bearings

				Questionaire 9.1.A
Description of application				
Steel Industry Wind Energy Rubber and Plastic Industry	 Steam and Gas Turbines Offshore and Marine Heavy-duty Vehicles 	Railv	vay ro Power ers	New design Existing design Project No.
Plain bearing	Flanged bearing	Thrust was	ther Spherical bearing Floating bearing Fixed bearing Br Br Br Br Control bearing Fixed bearing Br Control bearing Fixed bearing Br Control bearing Fixed bearing Fixed bearing Fixed bearing Fixed bearing Control bearing Fixed bearing Control bearing Fixed bearing Fixed bearing Fixed bearing Fixed bearing Control bearing Fixed bearing Fi	Sliding plate
Shaft rotates	Bearing rotates		Angular motion	Axial motion
Quantity Dimensions [mm] Inner diameter Outer diameter Bearing width Outer ring width Flange outer diameter Flange thickness Wall thickness Plate length Plate width Plate thickness	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Item 3 Item 3 Item 3	Motion Speed [rpm] Sliding speed [m/s] Stroke length [mm] Double strokes [/min] Rotating angle [°] Frequency [n/min] Tilt angle (spherical bearing) [°] Operating time Continuous operation Intermittent operation Duty operation [%/h] Days/year	Item 1 Item 2 Item 3
Loading	Item 1 Item 2	Item 3	Frictional distance [km]	Itom 1 Itom 2 Itom 2
Dynamic Alternating Impact Radial load [kN] Axial load [kN] Surface pressure Radial [MPa] Axial [MPa]			Shaft Bearing housing Environmental conditions Temperature at bearing Contact medium Other influences	Item 1 Item 2 Item 3
Mating material Material no./type Hardness [HB/HRC] Roughness R [um]	Item 1 Item 2	item 3	Desired operating time [h] Permissible wear [mm] Company	
Housing material	Item 1 Item 2	ltem 3	Company name	
Lubrication Dry running Permanent lubrication Medium lubrication Medium Lubricant Initial lubrication Hydrodyn. lubrication Dynamic viscosity		Item 3	Address Contact person Phone Fax Cell-phone E-mail	

Remarks Certificate required (e.g. 3.1) 	
Yes no Certificate required (e.g. 3.1)	
Explaination	
Explaination * angle: According to DEVA* definition, one cycle is four times the angle β This is the basis to calculate the expected sliding distance. Example: Bushing D ₁ = 50 mm and agle β = 5° → 1 cycle shows a sliding distance of 8,73 mm	

Portfolio

DEVA® in marine/offshore

DEVA[®] in heavy-duty

Industry solutions

deva.metal®

deva.bm®

deva.glide®

Product range

Product information

Disclaimer

The present technical documentation has been prepared with care and all the information verified for its correctness. No liability, however, can be accepted for any incorrect or incomplete information. The data given in the documentation are intended as an aid for assessing the suitability of the material. They are derived from our own research as well as generally accessible publications.

The sliding friction and wear values stated by us or appearing in catalogues and other technical documentation do not constitute a guarantee of the specified properties. They have been determined in our test facilities under conditions that do not necessarily reflect the actual application of our products and their service environment or permit comprehensive simulation in relation to them.

We provide guarantees only after written agreement of the test procedures and parameters and of all the relevant characteristics which the product is required to have.

All transactions conducted by DEVA® are subject, in principle, to our terms of sale and delivery as indicated in our offers, product brochures and price lists. Copies are available on request. Our products are subject to a constant process of development. DEVA® reserves the right to amend the specification or improve the technological data without prior notice.

DEVA®, deva.bm®, deva.bm®/9P, deva.metal®, deva.glide® and deva.tex® are registered trade marks of Federal-Mogul Deva GmbH, D-35260 Stadtallendorf, Germany.

Federal-Mogul DEVA GmbH Schulstraße 20 35260 Stadtallendorf / Germany

Phone +49 6428 701-0 Fax +49 6428 701-108

www.deva.de

www.federalmogul.com