

SUPER-POWER, FOR THICK AND THIN PLATES

High Power Laser Cutting Machine - S 4020

High Power Laser Cutting Machine - S 4020

Equipped with high/super power laser device, efficient thick plate cutting is no longer a dream, thin plate cutting is more speedy; BODOR database of cutting process will provide you with data support of performance and energy saving to save your cutting cost.

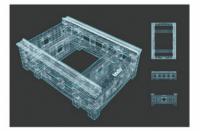
Product parameters

Model S4020

Working area 4000*2000mm

Laser power 12000W/10000W/8000W/6000W

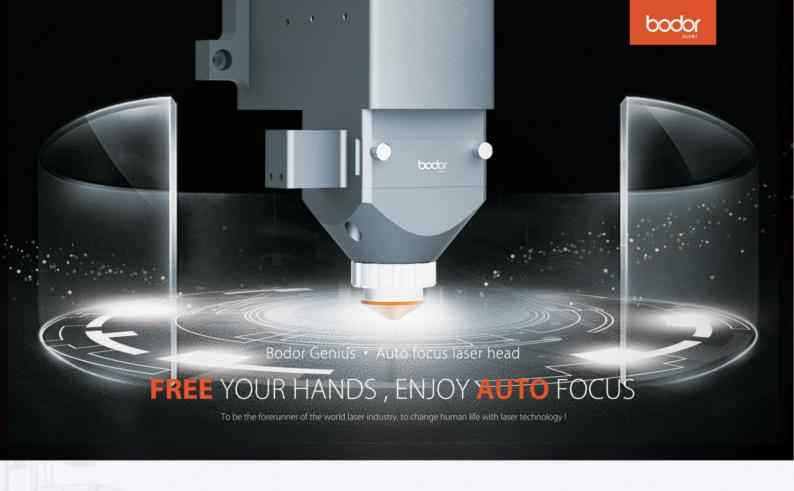
X/Y-axis max.moving speed 140m/min X/Y-axis positioning accuracy 0.05mm X/Y-axis repositioning accuracy 0.03mm



Material is more suitable

Technique is more suitable

Structure is more reasonable


Clone

Mold pouring, clone production; integrally formed, reject splicing

Durable

Using flake graphite cast iron, the lowest tensile strength of which is 200MPa. High carbon content, high compressive strength and high hardness.

Strong shock absorption and wear resistance. Low thermal sensitivity and bed gap sensitivity reduce the loss of equipment in using, so the machine accuracy could maintain for a long time, and no deformation in a life cycle.

AUTO-FOCUS

Applicable to various focal lengths, which are controlled by machine tool control system. Focal point will be automatically adjusted in cutting process to achieve the best cutting effect of different thicknesses sheets metal.

Free

Free your hands. Focal length is controlled by operating system. We don't need to do manual regulation, which effectively avoids errors or faults caused by manual operation.

Fast

It can automatically adjust the most appropriate focal points in working process, greatly improving cutting speed;
When replacing different materials or different thicknesses sheet, manual focus laser head needs to adjust focal length manually,
very inefficient; auto focus laser head can read system storage parameters automatically, very efficient;

Accuracy

Increasing perforation focus length, separately setting perforation focal length and cutting focal length, enhance cutting accuracy.

Durable

Built-in double water-cooling structures can ensure constant temperature of collimating and focusing components, avoid lenses overheating and extend service life of lenses;

Increasing collimation protective lens and focus protective lens, carefully protect key components.

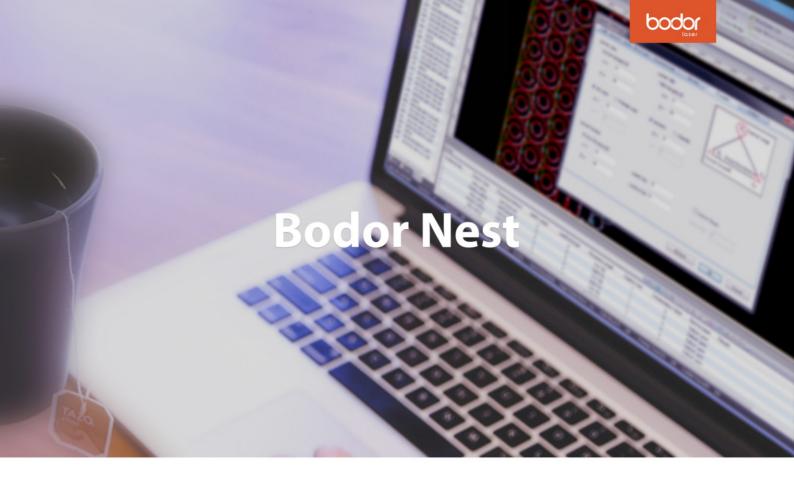
ENVIRONMENT FRIENDLY AND HEALTHY FULL PROTECTION COVER

All Cover Exchange Platform Laser Cutting Machine — S 4020

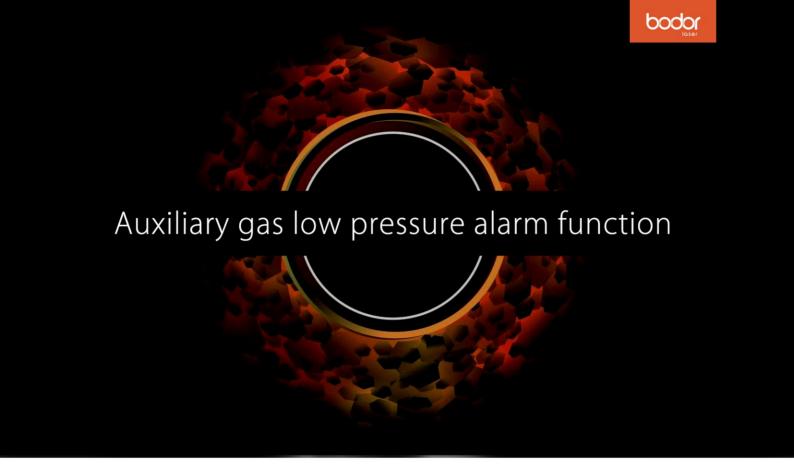
Full closed protection improves using security; laser protection glass isolates laser radiation to human beings; automatic collection system of smokes and dusts is environment friendly; intelligent monitoring system reduces accident rate, making us enjoy beauty and health in cutting process.

TIME-SAVING AND EFFORT-REDUCING

TWO AUTOMATIC EXCHANGE PLATFORMS SYSTEM


All Cover Exchange Platform Laser Cutting Machine — P4020

Rapid exchanging between two platforms greatly improve work efficiency. Rack and pinion transmission system has better rigidity and higher accuracy, saving feeding time, making operation more efficient.


WIFI Remote Intelligent Assistance

Global real-time feedback, Providing real-time fault analysis and troubleshooting.

Bodor Nest supports the import of various graphics, generates NC code automatically, and optimizes the cutting sequence. Simple and fast system operation, efficient and accurate cutting instructions, improve plate utilization and reduce waste.

Auxiliary gas low pressure alarm function

Providing real-time pressure detection, pushing abnormal information when pressure value is lower than optimal cutting effect and precision. Ensure the cutting performance, accuracy and timeliness of gas replacement.

Operating system display

Touch screen

The first one to use UI design in the world which lets display respond to processing table, making processing more intuitive. Elegant curves precisely fit machine body. Strong waterproof breathable system creates the best space, making operation more convenient. Diamond cutting process and HD plasma tempered glass make screen more exquisite and comfortable to use.

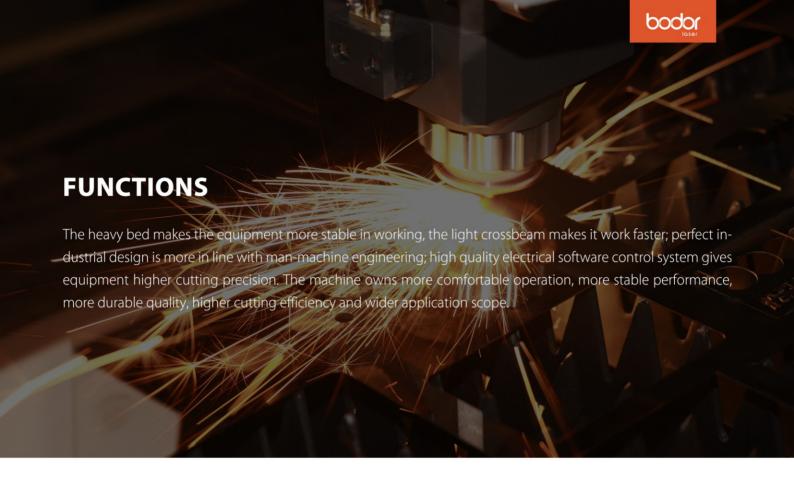
Double HD Cameras

Partitioning monitoring, no blind corner in machining region, to monitor every point at any time, intuitive machining, secure operation and controllable process.

Cast aluminum crossbeam

Integral steel mold pressure casting, light, flexible and efficient

After artificial aging, solution treatment and finishing, crossbeam owns good integrity, rigidity, surface quality, toughness and ductility. Aluminum alloy's metal characteristics of light weight and strong rigidity are helpful to high speed movement in processing, and high flexibility is beneficial to high-speed cutting of various graphics based on high accuracy. Light crossbeam can give equipment a high operation speed, improving processing efficiency to ensure processing quality.



Appearance design

Aesthetics was introduced to industrial ID, perfect combination of technology and aesthetics

Surrounded by baking paint silver decoration, coordinated with diamond cutting tempered glass and alpine white sheet metal design, the international design of the machine is accepted by global consumer groups. The workplace is neat, orderly and space-saving.

Auxiliary feeding mechanism

The promotion and demotion of subsidiary roller table reduces friction force between parts and working table, making loading and unloading more convenient.

Intelligent travel protection

Automatically monitor operation range of crossbeam and cutting parts, keeping operation within machining range. Double guarantees of fixed limitation greatly improve equipment and personal safety, minimizing the using risks.

Automatic lubrication system

Automatic lubrication system provides timing and ration lubricating oil for equipment to ensure its normal and high speed operation, and owns functions of abnormal alarm and liquid level alarm. The system greatly enhances cutting accuracy and effectively extends service life of transmission mechanism.

A new generation of safety following module

Laser head keeping distance with work piece in cutting process can reduce collision risks. It will stop cutting when colliding plate. The safety following module reduces accident rate and improves cutting performance.

Intelligent alarm system

The system will start full abnormal alarm and push it to the interface through control center when equipment is abnormal

Finding equipment abnormal in advance and reducing hidden dangers can multiply improve the equipment troubleshooting efficiency.

Auxiliary gas low pressure alarm function

Providing real-time pressure detection, pushing abnormal information when pressure value is lower than optimal cutting effect and precision. Ensure the cutting performance, accuracy and timeliness of gas replacement.

The advantages of laser cutting compared with traditional cutting methods

- 1. High precision: Focusing accuracy is 0.05mm, repetition focusing accuracy is 0.02 mm
- 2. Narrow kerf: The laser beam is focused into a small spot, making the focus reach high power density, the material is quickly heated up to the gasification then evaporates to form holes. With the relative linear movement of the light beam to the material, the hole is continuously formed narrow gaps. Kerf width of the incision is usually $0.10 \sim 0.20$ mm.
- 3. Smooth section: Cutting surface without burrs, roughness of incision surface is generally controlled within Ra12.5.
- 4. Good cutting quality: Non contact cutting, cutting edge is less affected by heat, basically no thermal deformation of work piece, completely avoid down edge formed by material punching, in general, slit doesn't need secondary processing.
- 5. No damage to work piece: Laser cutting head won't contact surface of material to ensure no scratches to work piece.

Advantages compared with other cutting methods

- 1. Wire cutting: High precision, difficult to perforate, low cutting speed. Low investment in equipment. The price range of a device is from tens of thousands to hundreds of thousands or so.
- 2. Laser cutting: High precision, cutting speed is influenced by plate thickness which is generally within $10 \, \text{m}$ / min. Not suitable for thick plate (only for $0 \sim 25 \, \text{mm}$ plate), high investment in equipment is suitable for large batch processing.
- 3. Water jet cutting: High precision, low cutting speed. It is not suitable for large batch processing, and equipment investment is high.
- 4. Plasma cutting: High precision(The verticality of the product is not high), fast speed and consumption. Suitable for large batch processing, and equipment investment belongs to medium level.
- 5. Flame (oxygen) cutting: Accuracy(thermal deformation), low speed, suitable for large batch processing. Equipment investment is small and operation cost is cheap.
- 6. Punch: Difficult for processing various small-batch materials, suitable for few large batch processing. It is difficult to cut the thick plate. Equipment investment belongs to medium level.
- 7. Plate shearing machine: Not suitable for curvilinear cutting, straight line cutting is OK, difficult for thick plate cutting.

Metal Samples

OFFICE

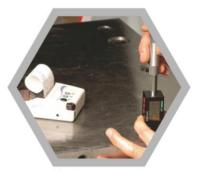
WORKSHOP

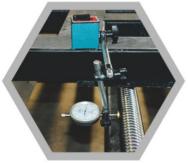
EUROPORPEAN QC SYSTEM

Precision testing and installation process

Flatness Large CNC milling machine processing

Each equipment is processed with 650°Cheat aging treatment machine body is stable without any deformation


Precision
3 axes coordinate
meter tests coordinate
setting precision


Straightness Laser collimator detects guide line

Fineness Every tiny parts is detected with many times

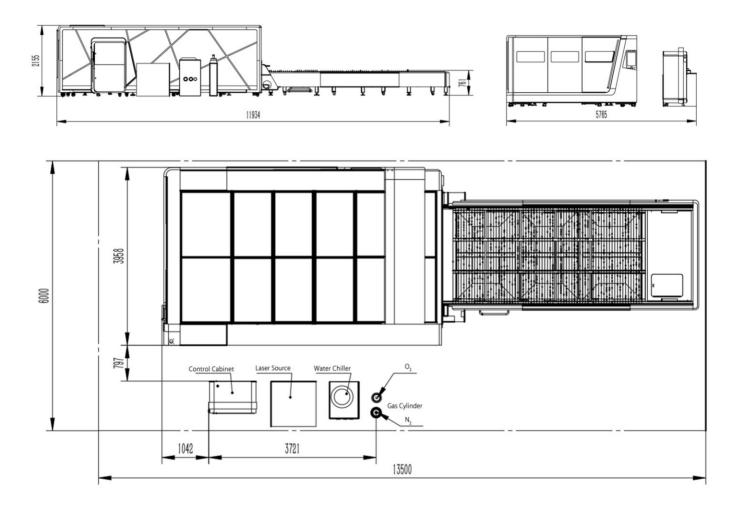
Flintiness Lathe Bed hardness measurement

Parallelism Rack gear parallelism test

Parallelism
Ball gear parallelism test

Perpendicularity
Marble feet for lathe bed
verticality test

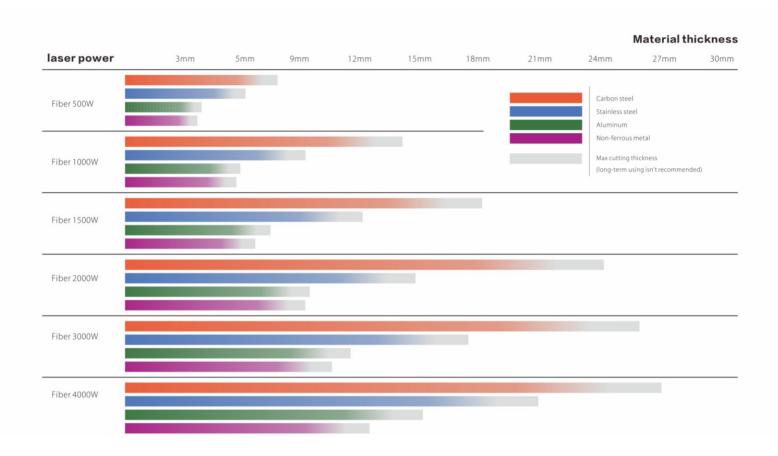
Skillfulness Quantity production with skilled technique and advanced manufacturing process



Durability
72 hours aging test
without laser

Stability
12 hours cutting test
with laser

S4020 • FLOOR PLAN



PLACING REQUIREMENT

- 1. The whole machine should keep away from obstacles at least 1m.
- 2. The whole machine should be far away from the hypocenter.
- 3. The planeness of placing field should be less than 5 mm.
- 4. Voltage fluctuation of the whole machine should be kept in \pm 5% .

Cutting Capacity

Above data is only for reference

8000W FIBER LASER USING COST

Assisted gas Consumption		Choosel:using air compressor Group as air supply to cutting stainless steel	Choosell:using O₂ cutting stainless steel	Chooselll:using N ₂ cutting stainless steel		
Power Consumption	Laser module	32kw	32kw	32kw		
	Water Chiller Group	7.2kw	7.2kw	7.2kw		
	Host Machine	10.5kw	10.5kw	10.5kw		
	Dust Exhausting Equipment	3kw	3kw	3kw		
Total Power		52.7kw	52.7kw	52.7kw		
Average Power Consumption (Take 80% Cutting Efficiency)		52.7×80%=42.16kw	52.7×80%=42.16kw	52.7×80%=42.16kw		
Gas Consumption		20×85%=17kw	About 20L/h(1.45 \$)	About 50L/h(3.61 \$)		
Quick-wear Part		0.43 \$/h	0.43 \$/h	0.43 \$/h		
All Cost Reference 0.1 \$/kwh		4.216+1.7+0.43=6.3 \$/h	4.216+1.45+0.43=6.10 \$/h	4.216+3.61+0.43=8.26 \$/h		

6000W FIRER LASER LISING COST

Assisted gas Consumption		Choosel:using air compressor Group as air supply to cutting stainless steel	Choosell:using O₂ cutting stainless steel	Chooselll:using N₂ cutting stainless steel		
Power Consumption	Laser module	24kw	24kw	24kw		
	Water Chiller Group	7.2kw	7.2kw	7.2kw		
	Host Machine	10.5kw	10.5kw	10.5kw		
	Dust Exhausting Equipment	3kw	3kw	3kw		
Total Power		44.7kw	44.7kw	44.7kw		
Average Power Consumption (Take 80% Cutting Efficiency)		44.7×80%=35.76kw	44.7×80%=35.76kw	44.7×80%=35.76kw		
Gas Consumption		20×85%=17kw	About 20L/h(1.45 \$)	About 50L/h(3.61 \$)		
Quick-wear Part		0.43 \$/h	0.43 \$/h	0.43 \$/h		
All Cost Reference 0.1 \$/kwh		3.576+1.7+0.43=5.71 \$/h	3.576+1.45+0.43=5.46 \$/h	3.576+3.61+0.43=7.62 \$/h		

Fiber Laser Cutting Process Parameters

		500W	1000W	1500	2000W	3000W	4000W	6000W	8000W	10000W	12000W
Material	Thickness	speed m/min	speed m/min	speed m/min							
Carbon steel (Q235A)	1	7.09.0	8.010	1526	2430	3040	3342	3542	3542	35-42	35-42
	2	3.04.5	4.06.5	4.57.0	4.76.0	4.87.5	5.28.0	6.08.0	6.210	7.012	1013
	3	1.83.0	2.43.0	2.64.0	3.04.8	3.35.0	3.55.5	3.86.5	4.07.0	4.27.5	4.58.0
	4	1.31.5	2.02.4	2.53.0	2.83.5	3.04.2	3.14.8	3.55.0	3.55.5	3.55.5	3.55.5
	5	0.91.1	1.52.0	2.02.5	2.23.0	2.63.5	2.73.6	3.34.2	3.34.5	3.34.5	3.34.8
	6	0.60.9	1.41.6	1.62.2	1.82.6	2.33.2	2.53.4	2.84.0	3.04.2	3.04.2	3.04.2
	8		0.81.2	1.01.4	1.21.8	1.82.6	2.03.0	2.23.2	2.53.5	2.53.5	2.53.5
	10		0.61.0	0.81.1	1.11.3	1.22.0	1.52.0	1.82.5	2.22.7	2.22.7	2.22.7
	12		0.50.8	0.71.0	0.91.2	1.01.6	1.21.8	1.22.0	1.22.1	1.22.1	1.22.1
	14			0.50.7	0.70.8	0.91.4	0.91.2	1.51.8	1.71.9	1.71.9	1.71.9
	16				0.6-0.7	0.71.0	0.81.0	0.8-1.5	0.91.7	0.91.7	0.91.7
	18				0.40.6	0.60.8	0.650.9	0.650.9	0.650.9	0.650.9	0.650.9
	20					0.50.8	0.60.9	0.60.9	0.60.9	0.60.9	0.60.9
	22					0.40.6	0.50.8	0.50.8	0.50.8	0.50.8	0.50.8
	25						0.30.5	0.30.5	0.30.7	0.30.7	0.30.7
	1	8.013	1825	2027	2430	3035	3240	4555	5066	6075	7085
	2	2.45.0	7.012	8.0-13	9.014	1321	1628	2035	3042	4055	5066
	3	0.60.8	1.82.5	3.05.0	4.06.5	6.010	7.015	1524	2030	2738	3345
	4		1.21.3	1.52.4	3.0-4.5	4.06.0	5.08.0	1016	1421	1825	2232
	5		0.60.7	0.71.3	1.8-2.5	3.05.0	4.05.5	8.012	1217	1522	1825
	6			0.71.0	1.2-2.0	2.04.0	2.54.5	6.09.0	8.014.0	1215	1521
Stainless steel	8				0.7-1.0	1.52.0	1.63.0	4.05.0	6.08.0	8.012.0	1016
(201)	10			- 4		0.60.8	0.81.2	1.82.5	3.05.0	6.08.0	8.012
	12					0.40.6	0.50.8	1.21.8	1.83.0	3.05.0	6.08.0
	14						0.40.6	0.60.8	1.21.8	1.83.0	3.05.0
	20							0.40.6	0.6-0.7 NO SU	1.21.8	1.83.0
	25								0.50.6	pport 0.60.7	1.21.8
	30								0.40.5	0.50.6	0.60.7
	40									0.40.5	0.50.6
	1	4.05.5	6.010	1020	1525	2538	3540	4555	5065	6075	7085
	2	0.71.5	2.83.6	5.07.0	710	1018	1325	2030	2538	3345	3850
	3		0.71.5	2.04.0	4.06.0	6.58.0	7.013	1318	2030	2535	3040
Aluminum	4			1.01.5	2.0-3.0	3.55.0	4.05.5	1012	1318	2130	2538
	5			0.71.0	1.21.8	2.53.5	3.04.5	5.08.0	9.012	1320	1525
	6				0.71.0	1.52.5	2.03.5	4.06.0	4.58.0	9.012	1318
	8				0.60.8	0.71.0	0.91.6	2.03.0	4.06.0	4.58.0	9.012
	10					0.40.7	0.61.5	1.02.0	2.23.0	4.06.0	4.58.0
	12					0.3-0.45	0.40.6	0.81.4	1.52.0	2.23.0	4.06.0
	16						0.30.4	0.60.8	1.01.6	1.52.0	2.23.0
	20							0.50.7	0.71.0	1.01.6	1.52.0
	25								0.50.7	0.71.0	1.01.6
	35									0.50.7	0.71.0
Brass	1	4.05.5	6.010	8.013	1016	2035	2530	4555	5565	6575	7585
	2	0.51.0	2.83.6	3.04.5	4.57.5	6.010	8.012	2530	3040	3345	3850
	3		0.51.0	1.52.5	2.54.0	4.06.0	5.06.5	1218	2030	2540	3050
	4			1.01.6	1.52.0	3.0-5.0	3.25.5	8.010	1018	1524	2533
	5			0.50.7	0.91.2	1.52.0	2.03.0	4.56.0	7.09.0	9.015	1524
	6				0.40.7	1.01.8	1.42.0	3.04.5	4.56.5	7.09.0	9.015
	8					0.50.7	0.71.0	1.62.2	2.44.0	4.56.5	7.09.0
	10						0.20.4	0.81.2	1.52.2	2.44.0	4.56.5
	12							0.20.4	0.8-1.5	1.52.2	2.44.0
	14								0.40.6	0.60.8	0.81.5