LOCK FLOOR JOINT PROFILE FOR PANELS

MULTI-STOREY WALLS

Ideal for connecting floor panels to multi-story walls (concrete or timber). The hooking system enables installation without the use of shoring or temporary support structures.

FAST INSTALLATION

The profiles can be pre-installed on panels and walls, without additional fastening on site during installation.

HYBRID STRUCTURES

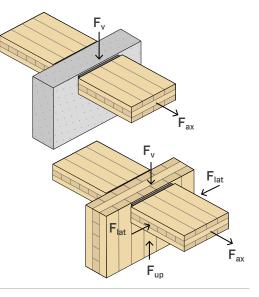
The LOCKCFLOOR135 model is ideal for fastening timber floors to steel or timber structures.

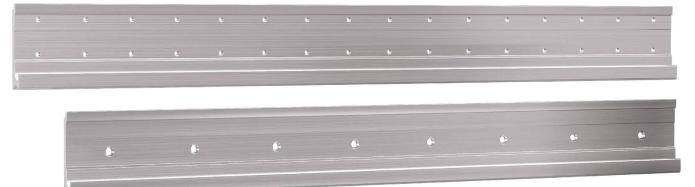
USA, Canada and more design values available online.

SC2 SC3

SC1

SERVICE CLASS


For information on the application areas of with reference to environment service class, atmospheric corrosivity class and timber corrosion class, refer to the website www.rothoblaas.com.


MATERIAL

EN AW-6005A aluminium alloy

EXTERNAL LOADS

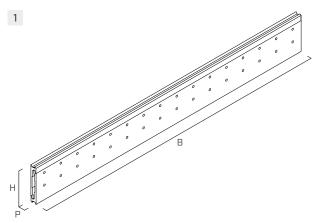
FIELDS OF USE

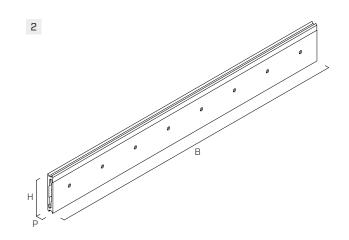
Concealed panel joint in timber-to-timber, timber-to-concrete or timber-to-steel configuration, suitable for panel floors, façades or stairs.

Can be applied to:

- CLT
- LVL
- MPP

PREFABRICATION


The timber-to-timber version is specifically designed for attaching floors to multi-story CLT walls. The hooking system is particularly suitable for prefabricated floors.


STAIRS AND OTHER

The geometry of the connector is also suitable for non-standard applications, as the installation of timber staircases, prefabricated façades and more.

CODES AND DIMENSIONS

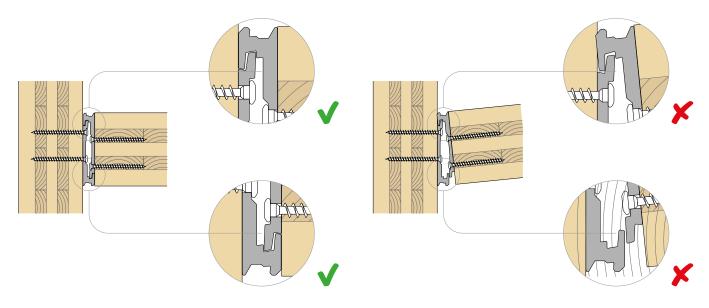
LOCK T FLOOR-LOCK C FLOOR

CODE	В	Н	Р	В	Н	Р	n _{screw} x Ø ⁽¹⁾	n _{anchors} x Ø ⁽¹⁾	シカ			pcs ⁽²⁾
	[mm]	[mm]	[mm]	[in]	[in]	[in]	[pcs]	[pcs]	2//	5 * · * *		
1 LOCKTFLOOR135	1200	135	22	47 1/4	5 5/16	0.87	64 - Ø7 <i>0.28</i>	-	•	-	-	1
2 LOCKCFLOOR135	1200	135	22	47 1/4	5 5/16	0.87	32 - Ø7 0.28	8 - Ø10 <i>0.40</i>	•	•	•	1

Screws and anchors not included in the package. $^{\rm (1)}$ Number of screws and anchors for connector pairs. $^{\rm (2)}$ Number of connector pairs.

FASTENERS

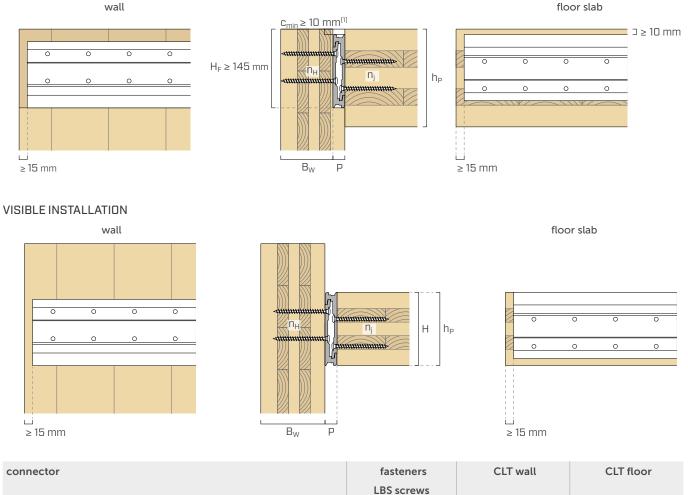
type	description		d	support	page
			[mm]		
LBS	round head screw	() <i>»</i>	7	2)111	571
LBS EVO	C4 EVO round head screw	() <i>]</i>	7	27111	571
LBS HARDWOOD EVO	C4 EVO round head screw on hardwoods	(]	7	2)))))	572
SKS	screw-in anchor	autoratarian antarian	10		528


INSTALLATION METHODS

CORRECT INSTALLATION

Install the panel by lowering it from the top, without tilt-ing. Ensure proper seating and coupling of the connector at both the top and bottom, as shown in the figure.

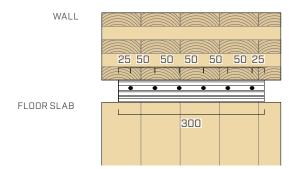
INCORRECT INSTALLATION

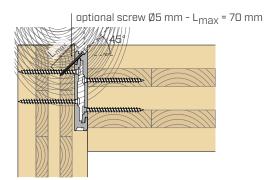

Partial and incorrect coupling of the connector. Ensure that both flanges of the connector are properly seated in their respective seats.

■ INSTALLATION | LOCK T FLOOR

CONCEALED INSTALLATION

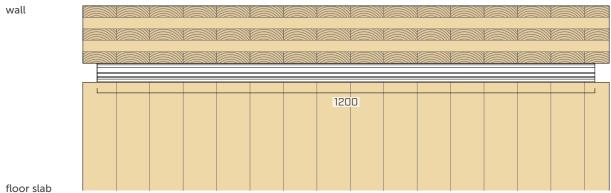
wall

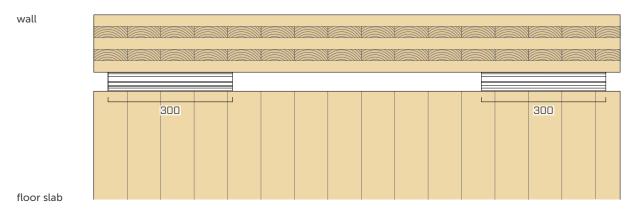

connector			fasteners	CLT wall	CLT floor	
			LBS screws			
	ВхH	no. of modules ⁽²⁾	n _H + n _j - Ø x L	Bw	h _p	
	[mm]		[mm]	[mm]	[mm]	
LOCKTFLOOR135	300 x 135	1	8 + 8 - Ø7 x 80			
	600 x 135	2	16 + 16 - Ø7 x 80	80	135 ⁽¹⁾	
	900 x 135	3	24 + 24 - Ø7 x 80	80		
	1200 x 135	4	32 + 32 - Ø7 x 80			


⁽¹⁾ Alignment between the top of floor and top of wall can be achieved by lowering the connector $c_{min} \ge 10$ mm from the top of the CLT floor. This ensures the minimum distance requirements for screws in the wall are met, with respect to the upper end of the wall. In this case, the minimum thickness of the h_p floor is 145 mm.

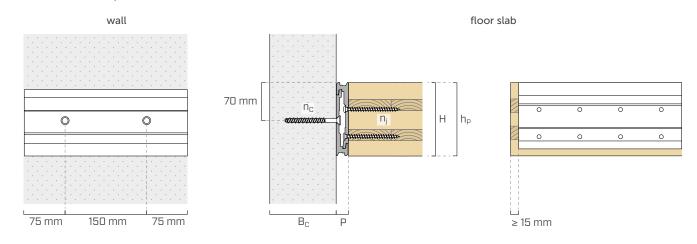
⁽²⁾The 1200 mm long connector can be cut into 300 mm standard length modules.

OPTIONAL INCLINED SCREW


45° inclined holes must be drilled on site using a 5 mm diameter and metal drill bit. The image shows the location of optional inclined holes for a 300 mm wide module.

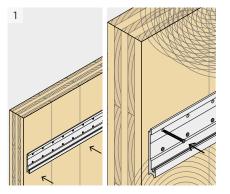


FASTENING PATTERNS

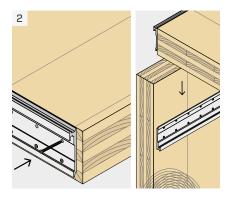

CONTINUOUS INSTALLATION

DISCONTINUOUS INSTALLATION

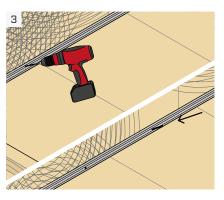
■ INSTALLATION | LOCK C FLOOR


connector			fasteners SKS anchors	concrete wall	fasteners LBS screws	CLT floor	
	ВхH	no. of modules ⁽¹⁾	n _c - Ø x L	B _c	n _j - Ø x L	h _p	
	[mm]		[mm]	[mm]	[mm]	[mm]	
LOCKCFLOOR135	300 x 135	1	2 - Ø10 x 100		8 - Ø7 x 80		
	600 x 135	2	4 - Ø10 x 100	120	16 - Ø7 x 80	135	
	900 x 135	3	6 - Ø10 x 100	120	24 - Ø7 x 80	155	
	1200 x 135	4	8 - Ø10 x 100		32 - Ø7 x 80		

⁽¹⁾ The 1200 mm long connector can be cut into 300 mm standard length modules.

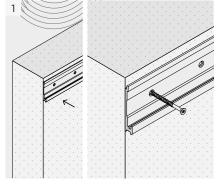

MOUNTING

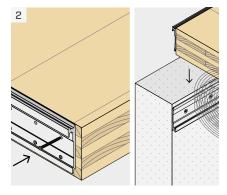
LOCK T FLOOR - VISIBLE INSTALLATION



Place the connector on the wall and fasten all screws.

Place the connector on the floor and install all screws.

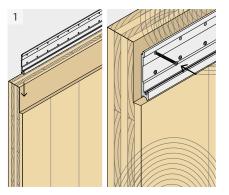

Engage the floor from the top to the bottom. Make sure that the two LOCK FLOOR connectors are parallel to each other and avoid subjecting them to excessive strain during installation.


It is possible to install screws for uplift, and lateral shear transfer, F_{up} and F_{up} by drilling \emptyset 5 inclined holes at 45° in the upper part of the connector.

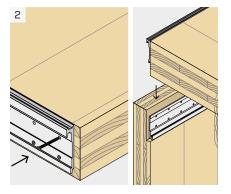
A Ø5 screw must be installed in the hole.

LOCK C FLOOR - VISIBLE INSTALLATION

Place the connector on concrete and fasten the anchors according to the installation instructions.

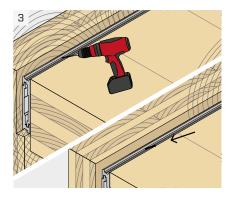

Place the connector on the floor and install all screws.

Engage the floor from the top to the bottom.



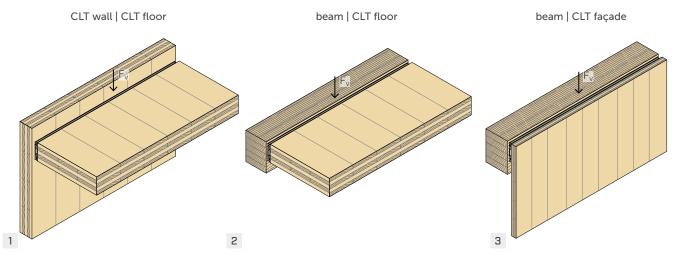
Make sure that the two LOCK FLOOR connectors are parallel to each other and avoid subjecting them to excessive strain during installation.

LOCK T FLOOR - CONCEALED INSTALLATION

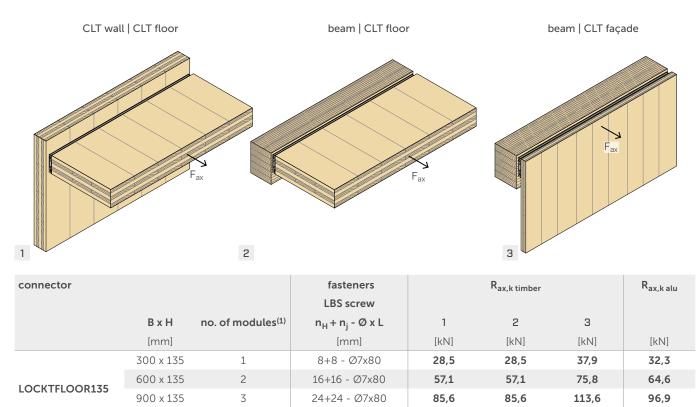


Cut the routing on the main element. Place the connector on the wall and fasten all screws.

Place the connector on the floor and install all screws.


Engage the floor from the top to the bottom. Make sure that the two LOCK FLOOR connectors are parallel to each other and avoid subjecting them to excessive strain during installation.

It is possible to install screws for uplift, and lateral shear transfer, $F_{\rm up}$ and $F_{\rm up}$ by drilling Ø5 inclined holes at 45° in the upper part of the connector.


A Ø5 screw must be installed in the hole.

STRUCTURAL VALUES | TIMBER-TO-TIMBER | Fv

connector	nnector				R _{v,k timber}	
	ВхH	no. of modules ⁽¹⁾	LBS screw n _H + n _j - Ø x L	1	2	З
	[mm]		[mm]	[kN]	[kN]	[kN]
	300 x 135	1	8+8 - Ø7x80	21,4	21,4	28,5
LOCKTFLOOR135	600 x 135	2	16+16 - Ø7x80	42,7	42,7	57,0
LOCKTFLOORISS	900 x 135	3	24+24 - Ø7x80	64,1	64,1	85,6
	1200 x 135	4	32+32 - Ø7x80	85,5	85,5	114,1

STRUCTURAL VALUES | TIMBER-TO-TIMBER | Fax

32+32 - Ø7x80

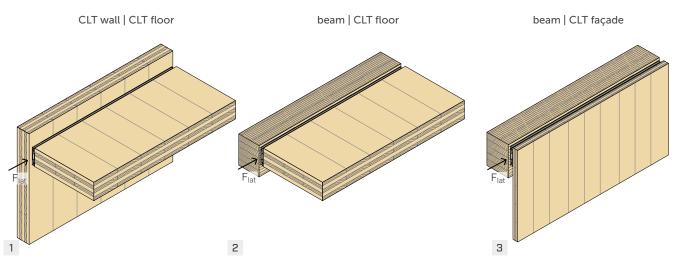
NOTES

 $^{(1)}$ The 1200 mm long connector can be cut into 300 mm standard length modules.

1200 x 135

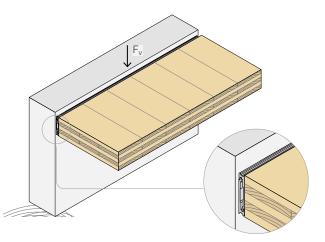
4

GENERAL PRINCIPLES For the GENERAL PRINCIPLES of calculation, see page 59.


114,1

151,5

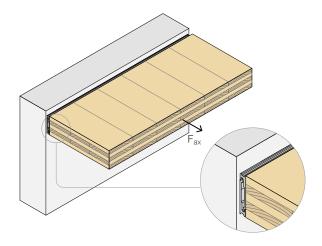
129,2


114,1

STRUCTURAL VALUES | TIMBER-TO-TIMBER | Flat

connector			fasteners LBS screws	fasteners LBS 45° screw		R _{lat,k} timber	
	ВхH	no. of modules ⁽¹⁾	n _H + n _j - Ø x L	n - Ø x L	1	2	З
	[mm]		[mm]	[mm]	[kN]	[kN]	[kN]
LOCKTFLOOR135	300 x 135	1	8+8 - Ø7x80	6 - Ø5x70	8,7	8,7	11,6
	600 x 135	2	16+16 - Ø7x80	12 - Ø5x70	24,6	21,4	21,4
	900 x 135	3	24+24 - Ø7x80	18 - Ø5x70	36,9	30,2	30,2
	1200 x 135	4	32+32 - Ø7x80	24 - Ø5x70	49,3	38,5	38,5

STRUCTURAL VALUES | TIMBER-TO-CONCRETE | Fv


connector			fasteners LBS screws		fasteners SKS anchors	R _{v,d concrete}
	ВхН	no. of modules ⁽¹⁾	n _j - Ø x L		n _c - Ø x L	
	[mm]		[mm]	[kN]	[mm]	[kN]
LOCKCFLOOR135	300 x 135	1	8+8 - Ø7x80	21,4	2 - Ø10x100	20,0
	600 x 135	2	16+16 - Ø7x80	42,7	4 - Ø10x100	40,1
	900 x 135	3	24+24 - Ø7x80	64,1	6 - Ø10x100	60,2
	1200 x 135	4	32+32 - Ø7x80	85,5	8 - Ø10x100	80,3

NOTES

 $^{(1)}$ The 1200 mm long connector can be cut into 300 mm standard length modules.

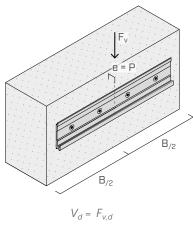
GENERAL PRINCIPLES For the GENERAL PRINCIPLES of calculation, see page 59.

STRUCTURAL VALUES | TIMBER-TO-CONCRETE | Fax

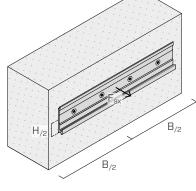
connector			fasteners	R _{ax,k timber}	fasteners	R _{ax,d concrete}	R _{ax,k alu}
			LBS screws		SKS anchors		
	ВхH	no. ofmodules ⁽¹⁾	n _j - Ø x L		n _c - Ø x L		
	[mm]		[mm]	[kN]	[mm]		[kN]
LOCKCFLOOR135	300 x 135	1	8+8 - Ø7x80	28,5	2 - Ø10x100	20,1	25,3
	600 x 135	2	16+16 - Ø7x80	57,1	4 - Ø10x100	39,2	50,6
	900 x 135	3	24+24 - Ø7x80	85,6	6 - Ø10x100	58,3	75,9
	1200 x 135	4	32+32 - Ø7x80	114,1	8 - Ø10x100	77,3	101,2

NOTES

 $^{(1)}$ The 1200 mm long connector can be cut into 300 mm standard length modules.


GENERAL PRINCIPLES For the GENERAL PRINCIPLES of calculation, see page 59.

DESIGN OF ALTERNATE FASTENERS AND ANCHORS


For fastening with anchors other than those indicated in the table, the calculation on concrete may be performed with reference to the ETA of the chosen anchor and the diagrams below.

In the same way, the calculation of fasteners on steel can be carried out in accordance with national design standards for steel structures, following the diagrams below.

The fastener group shall be designed for shear force and eccentric moment equal to:

 $M_d = e \cdot F_{v,d}$

 $V_{ax,d} = F_{ax,d}$

where: e = 22 mm for LOCKTFLOOR135 H = 135 mm hight of LOCK FLOOR connector B width of the LOCK FLOOR connector

GENERAL PRINCIPLES

- Dimensioning and verification of concrete and timber elements must be carried out separately. In particular, it is recommended to perform a splitting check for loads perpendicular to the grain of timber elements.
- The connector must always be fully fastened using all the holes.
- Fastening with partial nailing. Screws with the same length must be used for each connector half.
- Pre-drilling holes are not required for screws on secondary beam, with density $\rho_k \le 420 \mbox{ kg/m}^3.$
- In the calculation phase, a strength class of C25/30 concrete with thin reinforcement was considered, in the absence of spacing and distances from the edge and minimum thickness indicated in the installation tables. The strength values are valid for the calculation hypothesis defined in the table; for boundary conditions different from those in the table (e.g. minimum distances from the edge or different concrete thickness), the concrete strength must be calculated separately (see the DESIGN OF ALTERNATE FASTENERS AND ANCHORS section).
- The coefficients k_{mod} and γ_M should be taken according to the current regulations used for the calculation.
- The following verification shall be satisfied for combined loading:

$$\left(\frac{F_{ax,d}}{R_{ax,d}}\right)^2 + \left(\frac{F_{v,d}}{R_{v,d}}\right)^2 + \left(\frac{F_{lat,d}}{R_{lat,d}}\right)^2 \le 1$$

STRUCTURAL VALUES | Flat

- Values calculated according to EN 1995:2014 and ETA-19/0831 for screws without pre-drilling hole. $\rho_k=350~\text{kg/m}^3$ for CLT and $\rho_k=385~\text{kg/m}^3$ for GL24h have been considered for calculations.
- Design values can be obtained from characteristic values as follows:

$$R_{lat,d} = \frac{R_{lat,k \ timber} \cdot k_{mod}}{\gamma_M}$$

STRUCTURAL VALUES | F_v | F_{ax}

- Values calculated according to EN 1995:2014 and ETA-19/0831 for screws without pre-drilling hole. $\rho_k=350~kg/m^3$ for CLT and $\rho_k=385~kg/m^3$ for GL24h have been considered for calculations.
- Design values of concrete anchors are in accordance with ETA-24/0024.
- Design values can be obtained from characteristic values as follows: TIMBER-TO-TIMBER

$$R_{v,d} = \frac{R_{v,k \text{ timber}} \cdot k_{mod}}{\gamma_M}$$

$$F_{ax,d} = min \begin{cases} \frac{R_{ax,k\,timber} \cdot k_{mod}}{\gamma_M} \\ \frac{R_{ax,k\,alu}}{\gamma_{M2}} \end{cases}$$

TIMBER-TO-CONCRETE

$$R_{v,d} = \min \begin{cases} \frac{R_{v,k \text{ timber }} \cdot k_{mod}}{\gamma_M} \\ R_{v,d \text{ concrete}} \end{cases}$$

$$R_{ax,d} = \min \begin{cases} R_{ax,d \text{ timber}} = \frac{R_{ax,k \text{ timber}} \cdot k_{mod}}{\gamma_M} \\ R_{ax,d \text{ alu}} = \frac{R_{ax,k \text{ alu}}}{\gamma_{M2}} \\ R_{ax,d \text{ concrete}} \end{cases}$$

where:

- γ_{M2} is the partial safety coefficient of the aluminium material subject to tensile stress, to be taken according to the national standards used for calculation. If there are no other provisions, it is suggested to use the value provided by EN 1999-1-1, equal to γ_{M2} = 1.25.

CONNECTION STIFFNESS | F_V

Connection stiffness can be calculated according to ETA-19/0831, with the following equation:

$$K_{v,ser} = \frac{n \cdot \rho_m^{1.5} \cdot d^{0.8}}{30} \quad N/mm$$

where:

- d is the nominal diameter of the screw in the secondary beam, in mm;
- ρ_m is the average density of the secondary beam, in kg/m^3;
- n is the number of screws in the secondary beam.

INTELLECTUAL PROPERTY

 A LOCKTFLOOR model is protected by the Registered Community Design RCD 008254353-0011.