LASGAM

Piezo-controlled Gas Mixing System for laser cutting machines

Technical data

REVOLUTIONIZE PRECISION: UNLEASH THE POWER OF PIEZO TECHNOLOGY FOR LASER CUTTING IN YOUR APPLICATION! EXPERIENCE UNPARALLELED PRECISION AND EFFICIENCY – ELEVATE YOUR CUTTING EXPERIENCE WITH INNOVATION AT YOUR FINGERTIPS. WE AT HOERBIGER CAN HELP YOU OPTIMIZE YOUR ENTIRE CUTTING PERFORMANCE WITH YOUR MACHINE.

LASGAM

Piezo-controlled Gas Mixing System for laser cutting machines

The HOERBIGER Piezo-controlled Gas Mixing System LasGAM is an inline gas mixing system for oxygen and nitrogen. The system is continuously monitoring and controlling nitrogen and oxygen gas flows. Actual mixing is done in the pressure regulator just before the cutting head. The whole system is shown schematically in the figure below. The input ports are connected to the oxygen and nitrogen pressure supply of your laser cutting machine.

100% nitrogen, 100% oxygen and nitrogen/oxygen mix gas cutting is done by using the LasGAM.

Cutting with pure oxygen is done by selecting the oxygen mode of the gas mixer and the OXYGEN input port of the pressure regulator. Cutting with pure nitrogen is done by selecting the nitrogen mode of the gas mixer and the NITROGEN input port of the pressure regulator.

For cutting with controlled mixture of oxygen and nitrogen, set the gas mixer into cutting mode. This will open both lines, oxygen and nitrogen inlet and outlet valves. The gas mixer regulates the gas flow in both lines. A more detailed description of the operation modes is given on the next pages.

YOUR BENEFITS AT A GLANCE	ADVANTAGES	FEATURES	
You increase your productivity by up to 50 %			
You reduce your cutting gas consumption by up to 55%	Ultrafast change	Tankless design	
You can achieve a mixing ratio between 0 – 20 $\%~{\rm O_2}$ in less than 1 sec.	of the mixing ratio		
You get reliable cut quality through uninterrupted status monitoring	Mobile function monitoring	Bluetooth connection with app	
You get reliable cutting quality through highest repeatability	Stable system (mechanical, pneumatic)	Hose-free design	

+50 %

Productivity compared to cutting without gas mixing system

-55 %

Cutting gas consumption compared to cutting without gas mixing system <1 sec

Mixing gas ratio of 0-20 % O_2 achieved

GENERAL PROPERTIES

LasGAM

GENERAL PROPERTIES

MECHANICAL PROPERTIES

Length	785 mm
Width	320 mm
Height	150 mm
Weight	20 kg
IP-Protection	IP5X

PNEUMATIC CONNECTIONS

Nitrogen input	G 1/2" 40 bar MAX
Nitrogen output	G 1/2"
Oxygen input	G 3/8" 25 bar MAX
Oxygen output	G 3/8"
Pilot air input	G 1/8" 4,5 7 bar

ELECTRICAL PROPERTIES

Electric connections	M12 A-coded 4-pin male		
Bus connection	Ethercat (IN & OUT) or Profinet M12 D-coded 4-pin female		
Supply			
Nominal voltage (U_N)	24 V DC ± 10 %		
Max. residual ripple (U_N)	10 %		
Current consumption (I _{max})	1,05 A		
Nominal power (P _N)	20 W (max 25 W)		

MIXING PERFORMANCE

Adjustable oxygen ratio	0 20 % in mixing mode	
Repeatability	Typ. ± 0.007 % abs ¹	
Control accuracy	Typ. ± 0.25 % abs ¹	
Maximum flow rate mixgas	2.500 l/min (6 bar to 0 bar)	
Pressure mixed gas	Default setting: 02 input minus 1 bar	

MODES (100% NITROGEN, 100% OXYGEN)

Flow rate (Nitrogen)	0 2500 l/min	
Output pressure (Nitrogen)	Input pressure of nitrogen	
Flow rate (Oxygen)	0 250 l/min	
Output pressure (Oxygen)	Input pressure of oxygen	

¹With successeful flow calibration (see operating instructions)

DRAWINGS

LasGAM

FRONT PLATE

ELECTRICAL CONNECTIONS

1	PE Conductor		
2	Supply 24 V		1 +24VDC power 2 3 GND 4
3	Service Interface		
4	Ethercat In or Profinet	3 0 0 0 0 2 0 1	BUS_IN 1 TX + 2 RX + 3 TX - 4 RX -
5	Ethercat Out or Profinet		BUS_OUT 1 TX + 2 RX + 3 TX – 4 RX –

PNEUMATIC CONNECTIONS

- 6 O₂ input
- 7 pilot air
- 8 N₂ input

BACK PLATE

PNEUMATIC CONNECTIONS

- 9 N₂ output
- 10 O₂ output

OPERATION MODES

LasGAM

The LasGAM has **3 operation modes** and additionally **HOLD**, **OFF** and **Flow Calibration** mode. The modes are changed using the Ethercat or Profinet interface. The flow chart on the next page shows the single states and some basic properties.

Please note that this is just a rough explanation of the modes. A detailed description of the bus commands will be supplied and you will be given a detailed introduction separately.

YOUR BENEFITS AT A GLANCE

When the system is switched on, it starts in the **OFF** state. In- and outputs valves of the regulator unit are closed and the control valves are closed as well. After powering the system, the oxygen and nitrogen pipes to the cutting head are unpressurized. To ensure a proper start up, the laser cutting machine must start up the system.

CUTTING WITH MIXED GAS

To start a cutting process with mixed gas, a $%O_2$ **setpoint** must be sent to the gas mixer. Next, the pressure regulator at the cutting head must be given an **output pressure** and the gas inputs must be selected. Finally, the **CUTTING** mode must be selected.

Cutting can be started when the system's O_2 _reached flag gives a ready signal. Please ensure a **P_MIX_DELTA** and **PC_02_IN_RANGE_DELTA** that is big enough. If you set **P_MIX_DELTA** to zero, it will be automatically set to the recommended value of 1.000 mbar.

CUTTING WITH PURE OXYGEN

For Cutting with pure oxygen just select **OXYGEN** mode by setting the PDO "**STATE_REQUEST**" to Cutting_Oxygen value. The gas and control valves in the oxygen line are fully opened and the $%O_2$ _reached flag will indicate that a pure oxygen flow is set up. Moving the cutting head does not require to change into HOLD mode in this case.

CUTTING WITH PURE NITROGEN

For Cutting with pure nitrogen just select **NITROGEN** mode by setting the PDO "**STATE_REQUEST**" to Cutting_Nitrogen value. The gas and control valves in the nitrogen line are fully opened and the N_2 _reached flag will indicate that a pure nitrogen flow is set up. Moving the cutting head does not require to change into **HOLD** mode in this case.

COMMUNICATION

LasGAM

STATE DIAGRAM

SCHEMATIC SYSTEM DESIGN

COMMUNICATION

LasGAM

PROCESS DATA OBJECTS (PDO) ETHERCAT/PROFINET

	FUNCTION/		
OBJECTS Brief description	SIZE	VALUE	DESCRIPTION
STATE		Low Byte	Off=0, Starting=1, Hold=2, Cutting=3, Cutting_Oxygen=4, Cutting_Nitrogen=5, Flow_Calib_Start=6, Flow_Calib=7, Flow_Calib_Ok=8, Flow_Calib_Fail=9, State_Error=10
SIAL		High Byte	Bit 0 READY (TRUE=1, FALSE=0) Bit 1 PC_02_IN_RANGE (TRUE=1, FALSE=0) Bit 2 Invalid State Request Bit 3-7 RESERVED
PC_02_DELTA	Output/ 1 Word	01000 digits = 0100%	Current value of tolerance band for O_2 concentration in range, used for calculation of PC_O2_IN_RANGE
PC_02	I WORD	01000 digits = 0100 %	Current $\rm O_2$ concentration in steps of 0.1 $\%$
FLOW_N2		025000 digits = 02500 l/min	Current N_2 flow in steps of 0.1 l/min
FLOW_02		010000 digits = 01000 l/min	Current O_2 flow in steps of 0.1 l/min
FLOW_TOTAL		035000 digits = 03500 l/min	Current total flow in steps of 0.1 l/min
P1_N2		050000 digits = 050.000 mbar	N ₂ input pressure in mbar
P2_N2		050000 digits = 050.000 mbar	N_2 output pressure in mbar
P1_02		030000 digits = 030.000 mbar	O ₂ input pressure in mbar
P2_02		030000 digits = 030.000 mbar	O ₂ output pressure in mbar
SER_NO		Decimal number	Serial number
SW_VER		Decimal number	Software version
DIAGNOSTICS		Low Byte	Code of active Warning
	Output/	High Byte	Code of active Error
OUT_1	1 Word		Reserved
OUT_2			Reserved
OUT_3			Reserved
STATE_REQUEST			0 = Off 2 = Hold 3 = Cutting_Mix 4 = Cutting_Oxygen 5 = Cutting_Nitrogen 7 = Flow_Calibration
P_MIX_DELTA	Input/ 1 Word	010000 digits = 010.000 mbar	Set delta for nitrogen pressure control Standard = 1000 (1 bar) (Minimum 1 digit = 1 mbar; 0 = 1000 mbar)
PC_02_IN_ RANGE_DELTA		01000 digits = 0100%	Set tolerance band for $\rm O_2$ concentration in range in steps of 0.1 $\%$
SETPOINT_PC_02		01000 digits = 0100%	Setpoint for $\rm O_2$ concentration in steps 0.1 %
IN_1			Reserved
IN_2			Reserved
IN_3			Reserved

CONVERSION FACTORS

LasGAM

CONVERSION FACTORS

VALUE	UNIT	CONVERSION UNIT	FACTOR
	mm	in	0.03934
Length	in	mm	25.4
Length	m	ft	3.28084
	ft	m	0.3048
	kg	lb	2.204622
Weight	lb	kg	0.453592
	har	noi	14.5035
	bar	psi	0.06895
	psi	bar	
Pressure	MPa	psi	145.035
	psi	MPa	0.006895
	bar	МРа	0.1
	MPa	bar	10
_	°C	°F	1.8 °C + 32
Temperature	°F	°C	0.5556 °F – 32
	Nm	ft/lbs	0.7375
Torque	ft/lbs	Nm	1.3558

ADDITIONAL DOCUMENTATION

LasGAM

WWW.HOERBIGER.COM

This data sheet and additional documentation is available in the download area of the company's website.

www.hoerbiger.com

NOTES	
LasGAM	

HOERBIGER Flow Control GmbH

Südliche Römerstraße 15 86972 Altenstadt, Germany Tel +49 (0)8861 221-0 Fax +49 (0)8861 221-1305 E-mail: flowcontrol@hoerbiger.com www.hoerbiger.com

TECHNICAL DATA AND FIGURES The technical data and figures have been compiled with great care and according to the best of our knowledge. We make no guarantee of the timeliness, correctness, and completeness of the details. The content of this catalog should not be considered an offer in the legal sense. Authoritative for the contract conclusion is a written order confirmation from HDERBIGER, which is made exclusively at the current general HDERBIGER conditions of sales and delivery. You can get these from our Sales team or on our homepage at www.hoerbiger.com. The details and information included in general product descriptions, HDERBIGER catalogs, brochures, and price lists of any kind such as figures, drawings, descriptions, dimensions, weights, materials, technical and other performance details, as well as the products and services described are subject to change and can be changed or updated at any time without prior notice from HDERBIGER. They are only binding if the contract or the order confirmation makes explicit reference to them. Slight deviations from such product-describing details count as approved and do not affect the fulfillment of contracts insofar as hey are reasonable for the custadog includes no warranties, property promises or agreements about quality from HDERBIGER for the products depicted, neither explicitly nor implicitly, also not with regard to the tavailability of the products. Insofar as legally permissible, liability on the part of HDERBIGER for immediate or collateral damages, consequential damages, claims of any kind and regardless of the legal basis that have arisen due to the use of information included in this catalog is excluded. The liability exclusion dees not apply in case of fraudulent intent, intent or gross negligence, in the event of injury to body, health or life or if unlimited liability is mandatory according to the law. Trademark, copyright, and duplication: The display of commercial property rights such as marks, logos, registered trademarks, and patents in this c