

HPM AND PPM BOLTS

Version: DK 6/2012

Benefits of HPM and PPM bolts

- Bolt connection no welding at the site
 - HPM L -bolts have ETA-approval
 - Right to use CE-marking
- Free use of the product without commercial limitations and obstacles
- Standardized products
 - Precalculated design parameters available
 - Fast delivery time

Peikko benefits

- reliable: passed demanding test program
- competitive price and delivery time
- economical and easy to use in designing, manufacturing and installation of the elements

CONTENTS

1.	DESCRIPTION OF THE SYSTEM	4
2.	DIMENSIONS AND MATERIALS	5
3.	MANUFACTURING	6
	3.1 Manufacturing method	6
	3.2 Manufacturing tolerances	6
	3.3 Manufacturing markings	6
	3.4 Quality control	6
4.	CAPACITIES	6
5.	APPLICATION	7
	5.1 Limitations for application	7
	5.2 Design principles	7
	5.2.1 Principle of application	7
	5.2.2 Calculation principles 5.2.3 Requirements for concrete bedding	7
	5.2.4 Minimum edge distances, centres and attachment bedding reinforcement for long bolts	8
	5.2.5 Minimum edge distances, centres and attachment bedding reinforcement for short bolts	8
	5.2.6 The correction factors of capacity values	10
	5.2.7 Joining to foundations and column to column connections	11
6.	INSTALLATION	. 11
	6.1 Appliance and equipment	11
	6.2 Bolt installation and installation tolerances	12
	6.3 Bending the bolts	13
	6.4 Welding of the bolts	13
	6.5 Installing the columns	13
7.	INSTALLATION CONTROL	.14
	7.1 Instructions for controlling bolt installation	14
	7.2 Instructions for controlling column installation	14

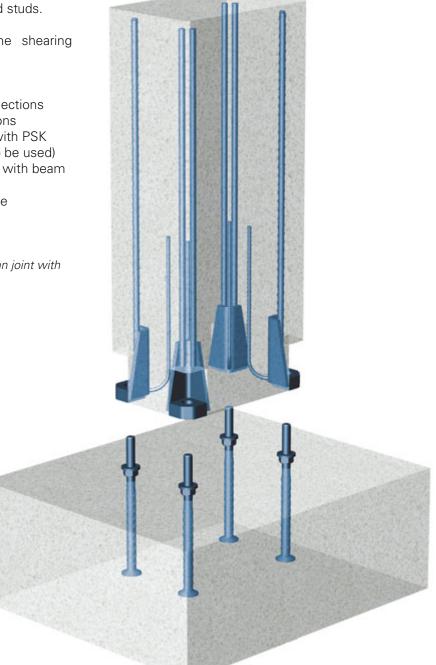
HPM AND PPM BOLTS

1. DESCRIPTION OF THE SYSTEM

Tension, compression and shear forces are transferred to the reinforced concrete base structure by Peikko[®] PPM and HPM bolts.

There are two types of PPM and HPM anchor bolts:

- long bolts (HPM P and PPM P) for splices
- short bolts (HPM L and PPM L) for anchoring


The long anchor bolts transfer the compression and tension forces through the bond of the ribbed bars. The short anchor bolts transfer the forces through the bond of the ribbed bars and headed studs.

Concrete pry out failure defines the shearing capacity of the bolt.

Use range:

- in precast concrete column connections
- in steel column joints / connections
- in concrete element wall joints with PSK wall shoes (Note! AL washers to be used)
- in concrete element beam joints with beam shoes
- in fixing machines to the concrete

Figure 1. Bolts in reinforced concrete column joint with precast concrete connection

2. DIMENSIONS AND MATERIALS

Materials and standards:

Ribbed bars	BSt 500 S	DIN 488
	B500B	EN 10080
Thread bars (PPM)	High strength steel	$fyk \ge 700 MPa (d > 35 mm)$
Washers	S355J2 + N	EN 10025 / DIN 7349
Nuts	property class 8	EN ISO 4032

HPM and PPM bolts are also available as hot dip galvanized. (Ordering code: For example HPM 24 L HDG)

	thread	А	stress area	ribbed bar	washer Ø	HP	M P	HF	M L	color
	М		of the thread	Ø		L	weight	L	weight	
HPM 16	16	140	157	16	ø 38-6	970	1.7	280	0.9	yellow
HPM 20	20	140	245	20	ø 46-6	1170	2.9	350	1.4	blue
HPM 24	24	170	352	25	ø 56-6	1360	4.9	430	2.2	grey
HPM 30	30	190	561	32	ø 65-8	1660	9.8	500	4.1	green
HPM 39	39	200	976	40	ø 90-10	2000	21.8	700	9.2	orange
HPM P	HPM P HPM L									
			L						L	
1										
KAAAAAAAA								∃в́ĭм		
							- س			
	Ø									

Table 1. Dimensions [mm], weights [kg], stress areas of the threads [mm²] and colors of the HPM bolts

Table 2. Dimensions [mm], weights [kg], stress areas of the threads [mm²] and colors of the PPM bolts

	thread M	A	stress area of the thread	ribbed bar Ø	washer Ø	PP	M P weight	PP	M L weight	color
PPM 22	22	160	303	2ø20	ø 56-6	1190	6.2	510	2.9	light. blue
PPM 27	27	170	459	2ø25	ø 65-8	1415	11.5	650	5.7	black
PPM 30	30	190	561	2ø25	ø 65-8	1705	14.1	670	6.2	-
PPM 36	36	190	817	4ø20	ø 80-8	1450	16.0	740	9.4	red
PPM 39	39	190	976	3ø25	ø 90-10	1815	23.5	880	12.7	brown
PPM 45	45	220	1306	4ø25	ø 100-10	1825	31.4	980	18.6	purple
PPM 52	52	250	1758	4ø32	ø 100-12	1930	52.1	1140	32.6	white
PPM 60	60	310	2362	4ø32	ø 115-15	2490	71.0	1330	42.0	-
PPM	Р					PP	'M L			
8			L			8 -		L		<u> </u>
			ſ	- <u>A</u>						
						⊐∰ Ţ M				
	Ø						Ø			
						00				

HPM AND PPM BOLTS

3. MANUFACTURING

3.1 Manufacturing method

Ribbed barsMechanical cuttingThreadsMechanical machiningWeldingMAG by hand or robotForgingHot forging or similar end anchor

Welding class C (SFS-EN 25817)

3.2 Manufacturing tolerances

Length±10 mmThread length+5, -0 mm

3.3 Manufacturing markings

Products are marked with the mark of Inspecta, the emblem of Peikko Group, the type of the product and a year and a week of manufacturing. The bolt is marked with same color as corresponding column shoe. Headed bolts have either "PG" or Peikko[®] emblem on the headed studs. HPM L bolts have CE-marking.

3.4 Quality control

The quality control involved in producing the steel parts conforms to the requirements set by the Regulations of Finnish Code of Building. Peikko Finland Oy is under the Inspecta Certification for quality control.

HPM and PPM bolts have certified product declarations in Finland, Sweden, Poland and Russia. PPM L bolts have certified product declaration in Germany. HPM L bolts are ETA approved.

4. CAPACITIES

Table 3. Design values for tensile- (N_{Rd}) and shear capacities (V_{Rd}) [kN]; concrete C25/30*

bolt	ETAG 001			
bon	N_{Rd}	V_{Rd}		
HPM 16	61.7	3,8		
HPM 20	96.3	6,9		
HPM 24	138.7	10,9		
HPM 30	220.4	19,2		
HPM 39*	383.4	36,9		
PPM 22	161.6	15,3		
PPM 27	244.8	25,2		
PPM 30	299.2	33,5		
PPM 36	435.7	52,6		
PPM 39	520.5	64,4		
PPM 45	696.5	88,6		
PPM 52	937.6	124,1		
PPM 60	1259.7	168,7		

*Bolts are dimensioned for concrete grade C25/30 except HPM 39, which is dimensioned for reinforced concrete C30/37 according to EN 1992-1/ Eurocode 2 chapter 8.4.2 in the case of good bond.

When tensile and shear forces strain the bolt simultaneously, the interaction should be checked with the following formula:

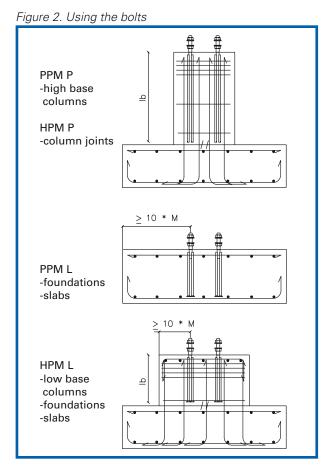
$$\left(\frac{N_d}{N_{Rd}}\right)^{4/3} + \left(\frac{V_d}{V_{Rd}}\right)^{4/3} \le 1$$

is the design value of tensile force is the design value of tensile resistance is the design value of shear force is the design value of shear resistance

The capacity of the normal force of a bolt cast in concrete is the same in tension and compression. The bending and buckling of the bolt should be noted in situations occurring during erection and installation. Such a situation can be dimensioned with Peikko Designer[®] dimensioning program that can be freely downloaded from Peikko's web-site, www. peikko.com.

5. APPLICATION

5.1 Limitations for application


The capacities of the bolts have been calculated for static loads. In the case of dynamic and fatigue loads, greater safety factors have to be used individually for each case.

5.2 Design principles 5.2.1 Principle of application

HPM P ribbed bar bolts are used as overlapping bolts in pre-cast columns and as foundation bolts.

HPM L bolts are also used as anchor bolts in foundations, and they are suitable for bolt joints at the top of concrete beams or on sides of columns.

PPM P bolts are used as overlapping bolts in columns. The main reinforcement of the basic bolt is attached to reinforcement of the column with an overlap.

PPM L bolts are used as anchor bolts in foundations.

5.2.2 Calculation principles

With short bolts tension and compression forces create a concrete cone into the base structure in the situation of ultimate limit state. To ensure the capacities minimum distances of the edge and centres, minimum concrete cover and minimum reinforcement has to be undertaken according to sections 5.2.4 and 5.2.5.

The normal forces on the long bolts (PPM P and HPM P) are transferred through the overlapped ribbed bars to the main reinforcement of the structure.

bolt type	Eurocode 2 α6
HPM P	1.5
PPM P	1.5

PPM and HPM bolts have been designed for reinforced concrete C25/30 in bond condition I.

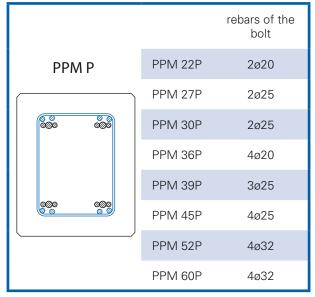
The maximum level of the bolts should be according to section 6.2.

The effect of the stability forces has been taken into consideration with factor 0.8 in the capacities.

5.2.3 Requirements for concrete bedding

PPM and HPM bolts have been designed for reinforced concrete C25/30. The correction factors for lower grades and also for structure class 1 can be found in section 5.2.6.

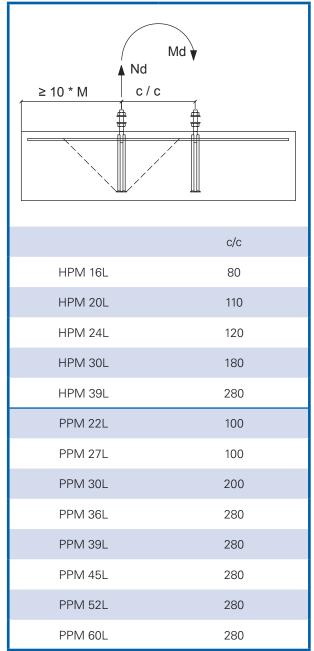
5.2.4 Minimum edge distances, centres and attachment bedding reinforcement for long bolts


The fire-resistance period and environment class, in which the anchor bolt is situated, defines the concrete cover thickness according to local regulations.

Also centre distances of long bolts (P-types) are defined according to local regulations.

Attachment bedding reinforcement

A basic column is reinforced with the amount of reinforcement corresponding to the bolts' bond.

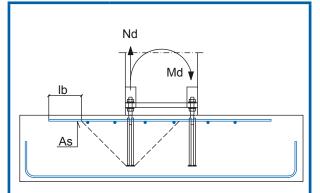

Shear forces

When shear forces are transferred, the edge distance has to be at least $10 \times M$. In the case of smaller edge distance, the edge has to be reinforced against the shearing forces or the capacity has to be decreased according to section 5.2.6

5.2.5 Minimum edge distances, centres and attachment bedding reinforcement for short bolts

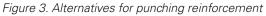
The minimum edge distance from the edge of the foundation is 10 \times M for short HPM L and PPM L bolts.

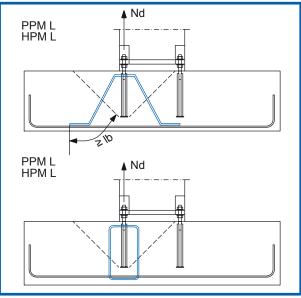
Table 7. The edge distance of short bolts in foundation plate and the minimum centre distances, when the joint consists of four bolts [mm]


If tensile force is affecting more than two bolts, the centre distances has to be checked as special case.

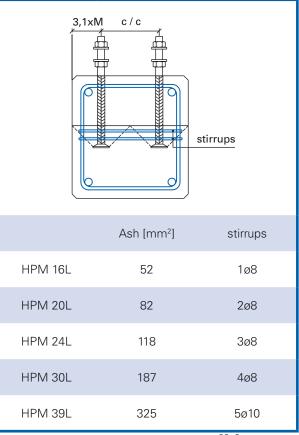
Tensile forces

A single bolt can be anchored without the need for punching reinforcement.


A pair of bolts requires the use of mesh reinforcement according to the concrete standards. The reinforcement is distributed evenly in the area of the concrete cone.


Table 8. Foundation reinforcement

	As [mm²/m]	mesh
HPM 16L	167	Ø8 #200
HPM 20L	225	Ø8 #200
HPM 24L	288	Ø8 #150
HPM 30L	336	Ø8 #150
HPM 39L	500	Ø10 #150
PPM 22L	355	Ø8 #150
PPM 27L	470	Ø10 #150
PPM 30L	490	Ø10 #150
PPM 36L	539	Ø10 #150
PPM 39L	663	Ø12 #150
PPM 45L	745	Ø12 #150
PPM 52L	869	Ø12 #100
PPM 60L	1019	Ø12 #100


If necessary, values lower than the edge distances stated in table 7 can be used if the concrete cone is anchored against bolt force by using the following principles.

If necessary, the HPM L anchor bolt can be located closer to the edge of the structure if the corner of the structure is reinforced according to the bolt forces. In that case, with the HPM L anchor bolt, the minimum edge distance is $3,1 \times M$. Using this small edge distance (min. $3,1 \times M$) may be necessary in beams, columns and in the edges of other strongly reinforced structures.

Table 9. The minimum edge distance of the HPM L anchor bolt. The reinforcement of the structure will prevent concrete failure.

www.peikko.com

HPM AND PPM BOLTS

Compression forces

The compression anchoring of short bolts requires a sufficient concrete layer (h) under the bolt's head, so that the anchor piece does not cause a conical fraction under the plate. If h in the structure is lower than the required $\boldsymbol{h}_{_{\text{required'}}}$ the structure has to be reinforced.

	Nd	
As	Reinforcement	
	h _{required} [mm]	As [mm ²]
HPM 16L	80	96
HPM 20L	100	141
HPM 24L	115	186
HPM 30L	145	311
HPM 39L	190	508
PPM 22L	90	149
PPM 27L	105	152
PPM 30L	120	298
PPM 36L	170	588
PPM 39L	195	720
PPM 45L	205	961
PPM 52L	220	1024
PPM 60L	280	1510

Table 10. Reinforcing the conical fracture under the bolt

Shear forces

When shearing forces are transferred, the edge distance has to be 10 x M at the most. Otherwise, the edge has to be reinforced against the shearing forces or the capacity has to be decreased according to section 5.2.6.

5.2.6 The correction factors of capacity values

Correction factors according to:

Eurocode 2 (P-bolts)

	ter	ies		
strength of concrete	C20/25	C25/30	C30/37	
rebars $d_s \le 32$	0.86	1.00	-	
rebars d _s > 32	0.76	0.89	1.00	
Values are calculated for design value of bonding strengths				

Edge distances for shear force

The shear force capacity requires an minimum edge distance of 10 x M. If this requirement is not in place, reinforcement must be used to make sure the edge of the concrete structure will not break. Alternatively, the capacities must be reduced in relation to the edge distances.

correction factor

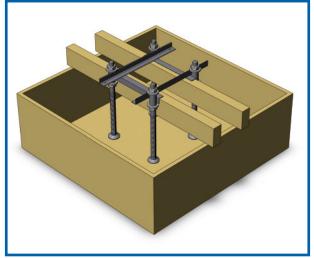
$$r = \left(\frac{C}{10 \times M}\right)^2$$

~

С = distance from structure edge to the centre of the bolt

= thread size Μ

6. INSTALLATION


6.1 Appliance and equipment

Compiling the bolts to bolt groups is done with the PPK installation frame.

By using the installation frame, the right centre distance c/c as well as the verticality of the bolts is secured. Centre lines marked to the installation frame make it easier to measure the bolt groups to their exact location according to module line. With the help of the installation frame, the bolts can be grouped easily for direct use in reinforcement. Use of the welded bolt groups, or grillages, is unnecessary.

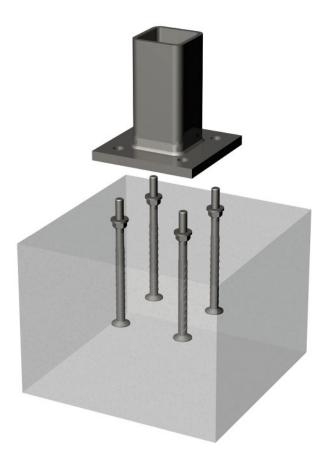
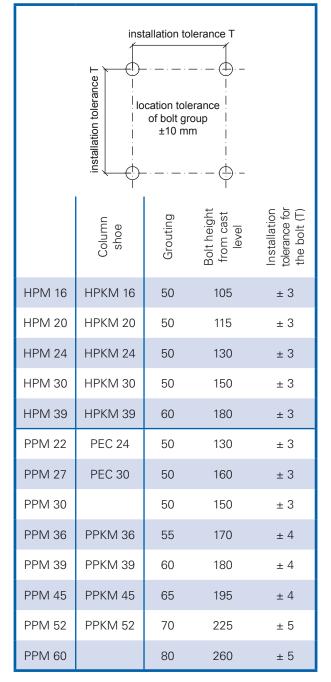

The frame is installed by tightening it between the nuts. During casting, the frame protects the threads. By greasing the threads before casting helps in the removal of the frame. The installation frame is attached by nailing it to the mould with a support timber and by binding the bolt group into the reinforcement. An open frame makes casting and compacting the concrete easier. After casting, the frame is detached and can be reused.

Figure 5. Using the PPK installation frame

Table 12.	Sizes	of the	nuts	[mm]
-----------	-------	--------	------	------


Thread	Кеу
M16	24
M20	30
M22	34
M24	36
M27	41
M30	46
M36	55
M39	60
M45	70
M52	80
M60	90

6.2 Bolt installation and installation tolerances

The bolts are installed to the level according to the figures in table 13. The level is measured from the surface of the rough casting, and the level tolerance is ± 20 mm.

Table 13. Installation tolerances and the anchoring bolt'sheight level [mm] from the surface of concrete whenHPKM, PPKM and PEC column shoes are used.

When the bolt group for the PPK installation frame is formed, a reciprocal location tolerance of ± 3 mm is achieved for the bolts. The location tolerance of the bolt group's hub has to be ± 10 mm in concrete element installation.

6.3 Bending the bolts

The HPM bolts and the anchor bars of the PPM bolts are made of BSt 500 S / B500B ribbed steel. Bending must be done in accordance with either EN or the Finnish Code of Building Regulations.

6.4 Welding of the bolts

Welding of the bolts should be avoided, although all materials used in HPM and PPM bolts are weldable (except the nuts).

Requirements and instructions of standard EN 17660-1: *Welding of reinforcing steel, Part 1: load bearing welding joints* shall be taken into account when welding rebars.

6.5 Installing the columns

Column installation is done on top of washers adjusted to the right level with the nuts and by using installation pieces (shims or packers) under columns. The verticality of the column is checked and the nuts are screwed on tight, eg. with impact tool or spanner. Joint castings are done prior to installing the upper structures.

7. INSTALLATION CONTROL

7.1 Instructions for controlling bolt installation

Before casting

- ensure that the right frame is being used (c/c centre distance, thread size). HPKM, PPKM and PEC column shoes have a column side measurement of 100 mm (M16 M36) or 120 mm (M39 M52 and PEC 36) greater than the bolts' c/c standards.
- ensure the location of the bolt group in relation to the module lines
- ensure that the reinforcement required by the bolts has been installed
- ensure that the bolts are on correct level
- ensure that installation frame and bolt group is not rotated

After casting

- ensure the location of the bolt group (the tolerance for concrete element column joints are portrayed in section 6.2). Greater variations must be reported to the structural designer.
- protect the thread until the installation of the column (tape, plastic tube etc.)

7.2 Instructions for controlling column installation

The joints have to be made according to the installation plan composed by the designer (construction engineer). If needed, Peikko's technical support will give advice.

In particular, check the following:

- installation order
- supports and bracing during installation
- instructions for tightening the nuts
- instructions for joint casting

Peikko Group • www.peikko.com