

WILLBRANDT Gummitechnik is specialised in shock and vibration isolation systems for decades and is recognised as an efficient problem solver and reliable partner in many areas of industry throughout the world.

Some of the reasons for the exceptional reputation of WILLBRANDT Gummitechnik are quick and prompt delivery from a fully stocked warehouse, professional on-site advice, application-orientated solutions from a team of experienced engineers, proprietary developments and patents, and a modern testing laboratory.

Information about this publication

The contents of this publication are the result of extensive development and application experience. All information and instructions are provided to the best of our knowledge; they do not constitute a guarantee with respect to characteristics and do not exempt the user from testing the suitability of products or from ensuring that the industrial property rights of third parties are not violated. No liability whatsoever shall be accepted for damage arising from advice given in this publication regardless of its nature or legal basis. We reserve the right to make technical modifications to the products.

WILLBRANDT Expansion Joints

Expansion joints are used in pipelines, on armatures and on pumps to compensate:

- thermal expansion
- mechanical vibrations
- · acoustic oscillations
- tensions

They are also used:

- for sound insulation
- as dismantling joints on pipeline armatures
- to assimilate assembly tolerances
- to seal pipeline wall penetrations

Typical applications are heating systems, water pipes, pipes in power stations and the chemical industry. Available are various qualities that are suitable for specific media (e.g. drinking water, oil, food).

Our qualified engineers design a suitable expansion joint according to your technical data. A wide range of different types are carried in stock. Special types can be manufactured at short notice.

A tight network of sales partners worldwide ensures that competent advice and servicing is provided to our customers over a wide area locally.

We offer expansion joints for various applications. Nominal sizes from DN 20 to DN 5000 are available.

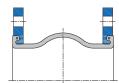
In addition to a comprehensive standard range of products, additional expansion joints can be manufactured according to customers' specifications - with and without tie rods.

It is also possible to provide expansion joints with special accessories in order to fully exploit the advantages of the expansion joints for almost all applications.

Contents

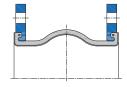
Introduction

Expansion Joints - Overview	4
Operating Temperature Ranges	8
Expansion Joints - Datasheets	9
Technical Appendix	93
Length Limiters / Tie Rods	93
Supporting Rings	97
Accessories	98
Guide Sleeves / Potential Equalisation	99
Special Designs	100
Planning, Fitting and Maintenance Instructions for Rubber Expansion Joints with Swivel Flanges or Solid Flanges	101
Pressure Units	121
Rubber Bellow Sealing Profile for Expansion Joints with Swivel Flanges	122
Tolerances in According to the FSA Handbook	122
Flange Connection Dimensions	123
Pressure Loss in Low-Corrugated Bellow Designs	126
Movement Diagram for Combined Movement Absorption (axial and lateral)	127

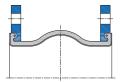


WILLBRANDT Expansion Joints - Overview

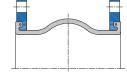
Type 39 DN range 50 - 1000 Overall length (mm) variable


Applications Industrial plants, repairs/replacements Page 9 onwards

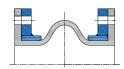
 Type 50
 DN range
 25 - 500


 PTFE
 Overall length (mm)
 130 - 200

ApplicationsChemical plants
Page 40 onwards


Type 39DN range50 - 500PTFEOverall length (mm)variable

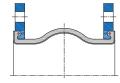
ApplicationsChemical plants
Page 13 onwards


Type 51 DN range 32 - 600 Overall length (mm) 130 - 250

Applications
Chemical plants, plant engineering, pressure pipes (25 bar)

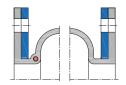
Type 40 DN range 200 - 5000 Overall length (mm) 250 - 800

Applications
Power stations, large-scale plants, treatment plants, pipelines
Page 14 onwards

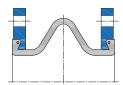

 Type 51 DN range
 32 - 300

 PTFE
 Overall length (mm)
 130

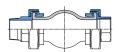
Page 46 onwards


Page 41 onwards

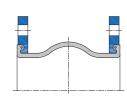
ApplicationsChemical plants, plant engineering, pressure pipes (10 bar)


Type 42 DN range 50 - 3000 Overall length (mm) 150 - 450

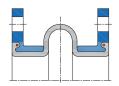
Applications
Paper industry, power stations, repairs/replacements up to 100 bar Page 21 onwards


Type 54 DN range 25 - 100 Overall length (mm) 65 - 100

ApplicationsHydraulic systems (SAE flanges)
Page 47 onwards

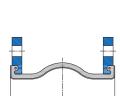

Type 46 DN range 20 - 50 Overall length (mm) 130

Applications
Building technology, engine technology
Page 26 onwards

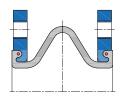

Type 55 DN range 20 - 1000 Overall length (mm) 125 - 300

Applications
Shipbuilding, building technology,
water plants, plant engineering,
treatment plants
Page 49 onwards

Type 48 DN range 50 - 250 Overall length (mm) 150 - 160

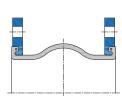

ApplicationsSteelworks, plant engineering
Page 28 onwards

 Type 55
 DN range
 25 - 500

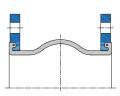

 PTFE
 Overall length (mm)
 125 - 250

Applications
Chemical plants
Page 55 onwards

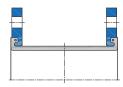
Type 49 DN range 32 - 500 Overall length (mm) 100 - 110


Applications
Building technology, shipbuilding, plant engineering, weighing technology, gas plants
Page 30 onwards

 Type 55 DN range
 20 - 300


 SO
 Overall length (mm)
 160 - 200

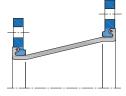
Applications
Shipbuilding, building technology,
water plants, treatment plants
Page 56 onwards


Type 50 DN range 20 - 1000 Overall length (mm) 130 - 300

ApplicationsBuilding technology, gas plants, plant construction, power stations Page 34 onwards

Type 56 DN range 50 - 1000 Overall length (mm) 150 - 1000

Applications
Paper industry, conveyor technology, media containing solids
Page 58 onwards



WILLBRANDT Expansion Joints - Overview

Type 57 DN range 50 - 300 Overall length (mm) 250 - 400

Applications

Paper industry, conveyor technology, media containing solids Page 61 onwards

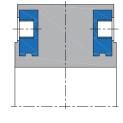
Type 58 DN range 50 - 3000 Overall length (mm) 200 - 1000

Applications


Paper industry, conveyor technology, media containing solids Page 64 onwards

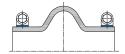
Type 59 DN range 350 - 1500 Overall length (mm) variable

Applications


Paper industry, conveyor technology, media containing solids Page 67 onwards

Type 60 DN range 20 - 200 Overall length (mm) 70 - 90

Applications


Building technology, industrial plants Page 71 onwards

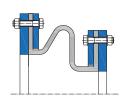
Type 61 DN range 50 - 1500 Overall length (mm) 250 - 730

Applications

Industrial plants, wastewater technology, engine technology Page 72 onwards

Type 62 DN range 50 - 600 Overall length (mm) variable

Applications


Drainage systems for bridges, halls, buildings Page 75 onwards

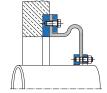
Type 63 DN range all Overall length (mm) variable

Applications

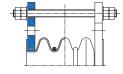
Plant engineering, production based on customer drawings Page 76 onwards

Type 64 DN range all Overall length max. 500 mm

Applications

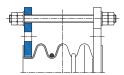

Duct sealing, building technology, power station construction; low pressure range: max. 0.5 bar Page 79 onwards

Type 65 DN range 80 - 5000 Overall length (mm) variable


Applications

Wall sealing, ground water sealing Page 81 onwards

Type 80 DN range 20 - 1200 Overall length (mm) 45 - 250


ApplicationsChemical plants
Page 83 onwards

Type 80 DN range 25 - 600 **HD** Overall length (mm) 55 - 322

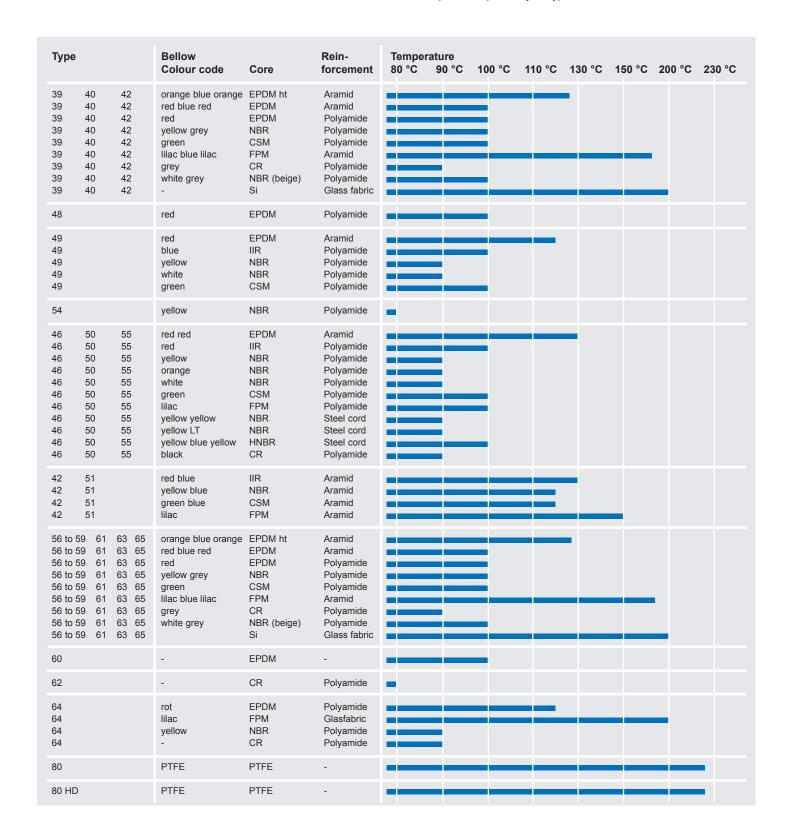
Applications

Chemical plants
Page 86 onwards

We will be happy to send you further information on

- Stainless steel expansion joints
- Stainless steel corrugated hoses
- Fabric expansion joints

You can find PDF files at www.willbrandt.com/Catalogue.



WILLBRANDT Max. Operating Temperature

During continuous operation, the maximum temperatures stipulated in the table may be exceeded by 10 % in the short term.

Because the permissible operating pressure falls when the temperature rises, please pay attention to the pressure/temperature specifications for the respective expansion joint type.

DN 50 - DN 1000

Type 39 is a handmade, low-corrugated rubber expansion joint. Its low corrugation helps to achieve very low flow resistance. It is characterised by its flexible installation length and variety of rubber qualities, which means that a suitable rubber compound is available for every application (see material descriptions on the following pages).

Type 39 is used in plant engineering, water technology and wastewater technology, where it is mainly used in the event of repairs if the existing gap does not correspond to any standard installation length. This avoids expensive full renovation on the piping system. It absorbs noise and vibrations.

Bellow design	Low-corrugated rubber bellow with reinforcement and shaped sealing bead with core ring, self-sealing (no additional seals required). Suitable for accommodating swiveling flanges.	Vacuum resistance	 DN 20 to 50 vacuum-resistant without additional accessories DN 65 to 250 up to -200 mbar without additional accessories DN 300 to 1000 not vacuum-resistant without additional
Flange version	Both sides with swiveling flange made of galvanized steel, with clearance holes, drilled according to DIN PN 10 (standard). Other materials and dimensions are		accessories - DN 65 to 1000 vacuum-resistant with vacuum supporting spiral/ring
	possible.	Accessories	- Guide sleeves - Potential equalisation
Pressure resistance	Design according to customer specification, max. 16 bar operating pressure.		 Flame-resistant protective covers Dust and splash protection covers Earth cover / sun protection hoods Segment tie rods PTFE lining
		Conformity	FDA and EG 1935/2004

Specifications

Bellow			Bellow design				F	Permis	sible o _l	peratin	ıg data				
Colour code	Colour marking	Core (inner)	Reinforce- ment	Cover (outer)	Max. temperature °C	°C	bar	°C	bar	°C	bar	°C	bar	°C	bar
red		EPDM	Polyamide	EPDM	100										
blue		EPDM TW	Polyamide	EPDM	100										
white/red		EPDM beige	Polyamide	EPDM	100										
red		EPDM AF	Polyamide	EPDM	100										
green		CSM	Polyamide	CSM	100										
yellow-grey		NBR	Polyamide	CR	100										
white-grey		NBR beige	Polyamide	CR	100										
grey		CR	Polyamide	CR	90										
red-blue-red		EPDM	Aramid	EPDM	100		_								
blue-blue-blue		EPDM TW	Aramid	EPDM	100		EX	•	n joints		•		ng to		
white-blue-red		EPDM beige	Aramid	EPDM	100			y	our opei	rating p	paramet	ers.			
orange-blue-orange		EPDM HT	Aramid	EPDM HT	125							l			
red-blue-red		EPDM AF	Aramid	EPDM	100										
green-blue-green		CSM	Aramid	CSM	100										
yellow-blue-grey		NBR	Aramid	CR	100										
white-blue-grey		NBR beige	Aramid	CR	100										
grey-blue-grey		CR	Aramid	CR	90										
lilac-blue-lilac		FPM	Aramid	FPM	180										
-	-	Silicone	Aramid	Silicone	180										
-	-	Silicone	Glass fabric	Silicone	200										

Application

Type 39 red (EPDM)

For water, sea water, cooling water with glycol or other chemical additives for treating water, saline solutions, weak acids and weak alkaline solutions. Unsuitable for aliphatic, aromatic and chlorinated hydrocarbons, oil or oily media.

Type 39 blue (EPDM TW)

Like Type 39 red, but approved for drinking water.

Type 39 white-red (EPDM beige)

Like Type 39 red, but with light-coloured internal rubber in food-grade.

Type 39 red AF (EPDM AF)

Like Type 39 red, but with abrasion-resistant EPDM rubber compound.

Type 39 green (CSM)

For chemicals, aggressive, chemical wastewater and compressor air containing oil.

Type 39 yellow-grey (NBR)

For oils, fats, gases, diesel fuels, kerosene and crude oil. Not suitable for aromatic and chlorinated hydrocarbons, esters and ketones.

Type 39 white-grey (NBR white)

Like Type 39 yellow-grey, but with light-coloured internal rubber in food-grade. Not approved for drinking water!

Type 39 grey (CR)

For water, wastewater, swimming pool water, salt water, cooling water with anti-corrosive products containing oil, oil mixtures and compressed air containing oil.

Type 39 red-blue-red (EPDM/aramid)

Like Type 39 red, but with aramid fabric.

Type 39 blue-blue (EPDM TW/aramid)

Like Type 39 blue, but with aramid fabric.

Type 39 white-blue-red (EPDM beige/aramid)

Like Type 39 white-red, but with aramid fabric.

Type 39 orange-blue-orange (EPDM HT/aramid)

Like Type 39 red, but with aramid fabric and for temperatures up to +125 $^{\circ}\text{C}.$

Type 39 red-blue-red AF (EPDM AF/aramid)

Like Type 39 red AF, but but with aramid fabric.

Type 39 green-blue-green (CSM/aramid)

Like Type 39 green, but with aramid fabric.

Type 39 yellow-blue-grey (NBR/aramid)

Like Type 39 yellow-grey, but with aramid fabric.

Type 39 white-blue-grey (NBR white/aramid)

Like Type 39 white-grey, but with aramid fabric.

Type 39 grey-blue-grey (CR/aramid)

Like Type 39 grey, but with aramid fabric.

Type 39 lilac-blue-lilac (FPM/aramid)

For flue gas desulphurisation systems and bio-diesel. High chemical resistance to benzene, xylene, toluene, aromatic, chlorinated hydrocarbons, mineral acids and fuels with an aromatic content of more than 50 %. Temperatures of up to +180 $^{\circ}$ C.

Type 39 silicone (Silicone/glass fabric or aramid)

Suitable for hot air, acetic acid. Satisfactory resistance to aliphatic engine and gear oils. Also available in foodstuff quality. Excellent resistance to ageing, UV, ozone and weather. Very good resistance to radiation. No resistance for steam above 120 °C. No resistance to fuels.

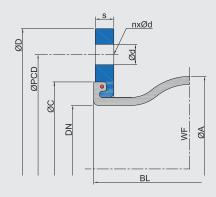
Note!

Detailed material descriptions on pages 5 - 7.

Important information

For aggressive media, please see the resistance table (can be requested separately).

The bellow should not be painted or insulated. Please refer to the installation instructions.


++++ We will be happy to send you further information on the individual types and designs. ++++

Design A - without tie rods

Can be used for movement absorption in any direction (for combined movements, see the movement diagram in the technical appendix), noise and vibration absorption.

The expansion joint's reaction force must be absorbed via suitable piping (see f tting instructions in the appendix).

Dimensions - Design A

DN	Overall length	В	ellow			Flange	PN 10*3				Movement	absorption		Weight*5
	BL*1	ØA	WF*2	ØD	ØPCD	Ød	n	s	ØС	axial +	axial -	lateral*4 ±	angular ±	
	mm	mm	mm ²	mm	mm	mm		mm	mm	mm	mm	mm	∠°	kg
50	200 - 500	96	3200	165	125.0	18.0	4	16	86	10	20	15	35	4.1
65	200 - 500	110	5300	185	145.0	18.0	8	16	106	10	20	15	30	5.7
80	200 - 500	122	8500	200	160.0	18.0	8	18	118	15	20	15	30	7.2
100	200 - 500	142	12800	220	180.0	18.0	8	18	138	15	20	15	25	8.3
125	200 - 500	170	18700	250	210.0	18.0	8	18	166	15	20	15	25	10.0
150	200 - 500	196	25900	285	240.0	23.0	8	20	192	15	20	15	20	13.4
200	200 - 500	256	40900	340	295.0	23.0	8	20	252	15	20	15	15	16.7
250	200 - 500	306	59900	395	350.0	23.0	12	20	304	15	20	15	10	21.9
300	200 - 500	352	82200	445	400.0	23.0	12	20	354	15	20	15	10	25.0
350	200 - 500	442	108000	505	460.0	22.0	16	20	412	15	20	15	10	38.8
400	200 - 500	495	137900	565	515.0	26.0	16	25	470	20	25	20	8	38.5
450	200 - 500	545	180100	615	565.0	26.0	20	25	512	20	25	20	8	47.7
500	200 - 500	595	203800	670	620.0	26.0	20	30	570	20	25	20	6	57.2
600	200 - 500	695	328600	780	725.0	30.0	20	30	675	20	25	20	6	75.9
700	200 - 500	832	418300	895	840.0	30.0	24	35	780	20	25	20	5	128.6
750*6	200 - 500	882	475100	927	914.4	34.4	28	35	830	20	25	20	4	154.0
800	200 - 500	932	540700	1015	950.0	33.0	24	40	887	20	25	20	4	163.7
900	200 - 500	1032	670600	1115	1050.0	33.0	28	40	985	20	25	20	4	198.7
1000	200 - 500	1134	823100	1230	1160.0	36.0	28	40	1085	20	25	20	4	236.0

^{*1} For shorter installation lengths, please refer to types 49, 50 and 55.

Permissible degree of utilisation for movement areas:

Important information

Please note the appropriate f xed point constructions and plain bearings in your piping system, as well as the tolerances as per the FSA Handbook (see the technical appendix on page 118)! For more information please refer to our installation instructions (p. 97 - 116). ++++ We will be happy to send you further information on the individual types and designs. ++++

^{*2} WF = effective area

^{*3} Other standards/dimensions possible.

^{*4} The greater the installation length, the greater the movement absorption.

^{*5} For the shortest installation length.

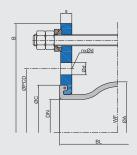
^{*6} Dimensions according to ANSI B16.47 Class 150 lbs

⁻ up to 50 °C: Utilisation ~ 100 % - up to 70 °C: Utilisation ~ 75 %

⁻ up to 90 °C: Utilisation ~ 60 %

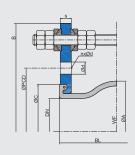


Length limiters

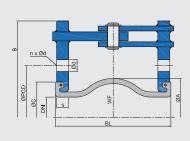

There is a selection of various length limiters/tie rods to absorb the reaction force and to protect the bellow from overstretching or collapsing:

with tie rods

Design C* with tie rods/thrust limiters



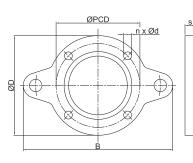
Design E with tie rods and spherical washers/conical sockets

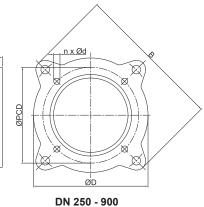

Design M

with tie rods/thrust limiters with spherical washers/conical sockets

Design F with hinge

Design B*

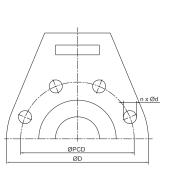



*Note: for design B and C

the lateral movement absorption is reduced by around 50 %.

Flange dimensions for designs with tie rods

DN	Length		Flange	PN 10 (exampl	e dimer	nsions)	I
	BL	В	ØD	ØPCD	Ød	n	s	øс
	mm	mm	mm	mm	mm		mm	mm
50	200 - 500	255	165	125	18	4	16	86
65	200 - 500	275	185	145	18	8	16	106
80	200 - 500	290	200	160	18	8	18	118
100	200 - 500	310	220	180	18	8	18	138
125	200 - 500	340	250	210	18	8	18	166
150	200 - 500	375	285	240	23	8	20	192
200	200 - 500	440	340	295	23	8	20	252
250	200 - 500	509	395	350	23	12	20	304
300	200 - 500	559	445	400	23	12	20	354
350	200 - 500	619	505	460	22	16	20	412
400	200 - 500	700	565	515	26	16	25	470
450	200 - 500	760	615	565	26	20	25	512
500	200 - 500	810	670	620	26	20	30	570
600	200 - 500	930	780	725	30	20	30	675
700	200 - 500	1045	895	840	30	24	35	780
800	200 - 500	1175	1015	950	33	24	40	887
900	200 - 500	1285	1115	1050	33	28	40	985
1000	200 - 500	1400	1230	1160	36	28	40	1085



DN 32 - 200

ØPCE

D

DN 1000

DN 50 - 1000 (Design F)

Important information

For information on the tie rods, please see the technical appendix (p. 89 - 92)! ++++ We will be happy to send you further information on the individual types and designs. ++++

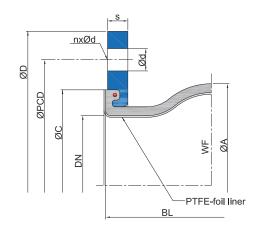
WILLBRANDT Chemical Expansion Joint Type 39 PTFE

DN 50 - DN 500

Type 39 PTFE is a low-corrugated, PTFE-lined rubber expansion joint. Its low corrugation helps to achieve very low flow resistance. The PTFE lining gives the expansion joint high chemical resistance or an anti-adhesive poperty.

The PTFE lining can be used for any rubber compound on Type 39. It is however necessary to ensure that the selected rubber compound achieves the highest possible media resistance, as this is the only way to achieve optimum service life.

Dimensions - Design A


DN	Length	В	ellow			Flange	PN 10				Movement	absorption	I
	BL	ØA	WF*	ØD	ØPCD	Ød	n	s	ØС	axial +	axial -	lateral ±	angular ±
	mm	mm	mm ²	mm	mm	mm		mm	mm	mm	mm	mm	∠°
50	200 - 500	96	3200	165	125.0	18.0	4	16	86	15	15	15	15.0
65	200 - 500	110	5300	185	145.0	18.0	8	16	106	15	15	15	15.0
80	200 - 500	122	8500	200	160.0	18.0	8	18	118	15	15	15	15.0
100	200 - 500	142	12800	220	180.0	18.0	8	18	138	15	15	15	10.0
125	200 - 500	170	18700	250	210.0	18.0	8	18	166	15	15	15	10.0
150	200 - 500	196	25900	285	240.0	23.0	8	20	192	15	15	15	10.0
200	200 - 500	256	40900	340	295.0	23.0	8	20	252	15	15	15	6.0
250	200 - 500	306	59900	395	350.0	23.0	12	20	304	15	15	15	6.0
300	200 - 500	352	82200	445	400.0	23.0	12	20	354	15	15	15	6.0
350	200 - 500	442	108000	505	460.0	22.0	16	20	412	15	15	15	4.0
400	200 - 500	495	137900	565	515.0	26.0	16	25	470	15	15	15	4.0
450	200 - 500	545	180100	615	565.0	26.0	20	25	512	15	15	15	4.0
500	200 - 500	595	203800	670	620.0	26.0	20	30	570	15	15	15	4.0

^{*} WF = effective area

Permissible degree of utilisation for movement areas:

- up to 50 °C: Utilisation ~ 100 % - up to 70 °C: Utilisation ~ 75 % - up to 90 °C: Utilisation ~ 60 %

Pressure resistance	Max. 6 bar operating pressure with polyamide cord reinforcement, max. 9 bar operating pressure with aramid or steel cord reinforcement.
Conformity	FDA and EG 1935/2004
Vacuum resistance	Only limited suitability for vacuum operation. A PTFE vacuum supporting ring, which allows full vacuum for small nominal diameters, can be used from DN 50. The PTFE supporting ring can only be used up to 50 °C. DN 350 expansion joints are not suitable for vacuum operation.

Important information

For aggressive media, please see the resistance table (can be requested separately).

The bellow should not be painted or insulated. Please note the installation instructions and tolerances as per the FSA Handbook (page 118) in the technical appendix!

++++ We will be happy to send you further information on the individual types and designs. ++++

DN 200 - DN 5000

Type 40 is a high-corrugated, highly elastic rubber expansion joint. Due to its corrugation it has very low inherent resistance. It is characterised by its ability to absorb a large amount of movement in any direction. The type and amount of corrugation, installation length and material strength of this type can all be tailored to your requirements. There are also a large number of rubber qualities available, which means that you can select a suitable rubber compound for any application (see the material descriptions on the following pages).

Type 40 is mainly used in large industrial plants and power plants, where it compensates of fsetting and compression, insulates vibration and absorbs pipe movement.

Bellow design	High corrugated rubber bellow with reinforcement and shaped solid rubber flanges, self-sealing (no additional seals required). Suitable for backing flanges with a supporting shoulder.	Accessories	 Guide sleeves Potential equalisation Flame-resistant protective covers Dust and splash protection covers Earth cover / sun protection hoods Segment tie rods
Flange version	Both sides with backing flange made		- PTFE lining
	of galvanized steel with clearance holes, drilled according to DIN PN 10 (standard). Other materials and dimensions are possible.	Movement absorption	Very large axial, lateral and angular movement absorption possible. Different corrugation geometries and bellow designs (single- and multi-corrugated)
Pressure resistance	Design according to customer		available.
	specification, max 40 bar operating pressure.	Approvals/conformity	Approved for drinking water, FDA and EG 1935/2004 conform
Vacuum resistance	Only vacuum-resistant with a vacuum supporting ring.		

Specifications

Bellow			Bellow design				F	Permis	sible o	peratin	g data				
Colour code	Colour marking	Core (inner)	Reinforce- ment	Cover (outer)	Max. temperature °C	°C	bar	°C	bar	°C	bar	°C	bar	°C	bar
red		EPDM	Polyamide	EPDM	100										
blue		EPDM TW	Polyamide	EPDM	100										
white/red		EPDM beige	Polyamide	EPDM	100										
red		EPDM AF	Polyamide	EPDM	100										
green		CSM	Polyamide	CSM	100										
yellow-grey		NBR	Polyamide	CR	100										
white-grey		NBR beige	Polyamide	CR	100										
grey		CR	Polyamide	CR	90										
red-blue-red		EPDM	Aramid	EPDM	100		_			90. 4					
blue-blue-blue		EPDM TW	Aramid	EPDM	100		EX	•	n joints		•		ng to		
white-blue-red		EPDM beige	Aramid	EPDM	100			y	our ope	rating p	aramet	ers.			
orange-blue-orange		EPDM HT	Aramid	EPDM HT	125							l			
red-blue-red		EPDM AF	Aramid	EPDM	100										
green-blue-green		CSM	Aramid	CSM	100										
yellow-blue-grey		NBR	Aramid	CR	100										
white-blue-grey		NBR beige	Aramid	CR	100										
grey-blue-grey		CR	Aramid	CR	90										
lilac-blue-lilac		FPM	Aramid	FPM	180										
-	-	Silicone	Aramid	Silicone	180										
-	-	Silicone	Glass fabric	Silicone	200										

Application

Type 40 red (EPDM)

For water, sea water, cooling water with glycol or other chemical additives for treating water, saline solutions, weak acids and weak alkaline solutions. Unsuitable for aliphatic, aromatic and chlorinated hydrocarbons, oil or oily media.

Type 40 blue (EPDM TW)

Like Type 40 red, but approved for drinking water.

Type 40 white-red (EPDM beige)

Like Type 40 red, but with light-coloured internal rubber in food-grade.

Type 40 red AF (EPDM AF)

Like Type 40 red, but with abrasion-resistant EPDM rubber compound.

Type 40 green (CSM)

For chemicals, aggressive, chemical wastewater and compressor air containing oil.

Type 40 yellow-grey (NBR)

For oils, fats, gases, diesel fuels, kerosene and crude oil. Not suitable for aromatic and chlorinated hydrocarbons, esters and ketones.

Type 40 white-grey (NBR beige)

Like Type 40 yellow-grey, but with light-coloured internal rubber in food-grade. Not approved for drinking water!

Type 40 grey (CR)

For water, wastewater, swimming pool water, salt water, cooling water with anti-corrosive products containing oil, oil mixtures and compressed air containing oil.

Type 40 red-blue-red (EPDM/aramid)

Like Type 40 red, but with aramid fabric.

Type 40 blue-blue AF (EPDM TW/aramid)

Like Type 40 blue, but with aramid fabric.

Type 40 white-blue-red AF (EPDM beige/aramid)

Like Type 40 white-red, but with aramid fabric.

Type 40 orange-blue-orange AF (EPDM H/aramid)

Like Type 40 red, but with aramid fabric for temperatures up to +125 $^{\circ}\text{C}.$

Type 40 red-blue-red AF (EPDM AF/aramid)

Like Type 40 red AF, but with aramid fabric.

Type 40 green-blue-green (CSM/aramid)

Like Type 40 green, but with aramid fabric.

Type 40 yellow-blue-grey (NBR/aramid)

Like Type 40 yellow-grey, but with aramid fabric.

Type 40 white-blue-grey (NBR white/aramid)

Like Type 40 white-grey, but with aramid fabric.

Type 40 grey-blue-grey (CR/aramid)

Like Type 40 grey, but with aramid fabric.

Type 40 lilac-blue-lilac (FPM/aramid)

For flue gas desulphurisation systems and bio-diesel. High chemical resistance to benzene, xylene, toluene, aromatic, chlorinated hydrocarbons, mineral acids and fuels with an aromatic content of more than 50 %. Temperatures of up to +180 °C.

Type 40 silicone (silicone/glass fabric or aramid)

Suitable for hot air, acetic acid. Satisfactory resistance to aliphatic engine and gear oils. Also available in foodstuff quality. Excellent resistance to ageing, UV, ozone and weather. Very good radiation resistance. Not for use with steam above 120 °C. No resistance to fuels.

Note!

Detailed material descriptions on pages 5 - 7.

Important information

For aggressive media, please see the resistance table (can be requested separately).

The bellow should not be painted or insulated. Please refer to the installation instructions.

++++ We will be happy to send you further information on the individual types and designs. ++++

Vacuum resistance

Type 40 is a rubber expansion joint that is only vacuum-resistant to a small degree, so a suitable vacuum supporting ring should be used on underpressure.

Standard material: 1.4571

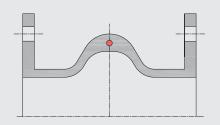
An alternative design with a vulcanised vacuum supporting ring is also available. Please note that greater stiffness rates must be taken into account and that the axial and lateral movement will be reduced.

Further information on vacuum supporting spirals/rings can be found on page 93 of the Technical Appendix.

Supporting ring versions

Supporting ring with baff e

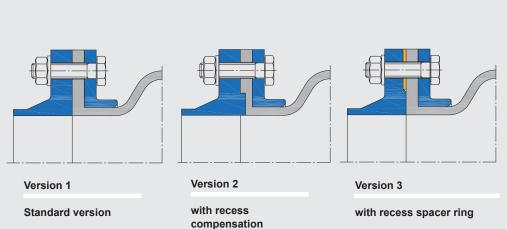
DN 200 - DN 350



Supporting ring with lock/double lock

DN 200 - DN 450 / DN 500 - DN 5000

Expansion joint with supporting ring


Vulcanised supporting ring (example)

Please take the limited movement into account

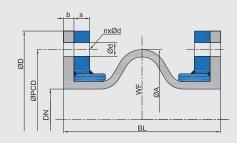
Flange versions

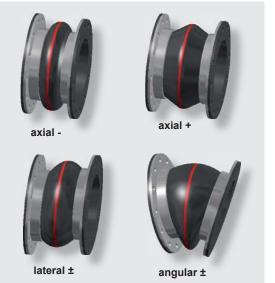
Type 40 is produced with pressureresistant solid rubber f anges. In order to ensure a tight connection to the pipe/fan, the counter f ange should be f at and have no seal. If this is not possible, the expansion joint f ange can be produced with a negative recess (see Version 2) in order to accommodate the raised face of the counter f ange and ensure a f at connection.

Alternatively, spacer rings can be used (Version 3).

Basic forms

There is an extensive package of forms with various corrugation profiles available for Type 40. The following basic forms are available:


DN 200	DN 500	DN 850	DN 1150	DN 1450	DN 1900	DN 2300	DN 2800	DN 3200	DN 4000
DN 250	DN 550	DN 900	DN 1200	DN 1500	DN 1950	DN 2400	DN 2850	DN 3300	DN 4200
DN 300	DN 600	DN 950	DN 1250	DN 1600	DN 2000	DN 2500	DN 2900	DN 3400	DN 4500
DN 350	DN 650	DN 1000	DN 1300	DN 1650	DN 2100	DN 2550	DN 3000	DN 3450	DN 4600
DN 400	DN 700	DN 1050	DN 1350	DN 1700	DN 2200	DN 2600	DN 3100	DN 3600	DN 4800
DN 450	DN 800	DN 1100	DN 1400	DN 1800	DN 2250	DN 2700	DN 3150	DN 3800	DN 5000



Design A - without tie rods

Can be used for movement absorption in any direction (for combined movements, see the movement diagram in the technical appendix), noise and vibration insulation.

The expansion joint's reaction force must be absorbed via suitable piping (see f tting instructions in the appendix).

Dimensions for Design A

DN	Length		Bellow			Fla	nge PN 1	0*4			Movement a	bsorption*5		Weight
	BL*1	ØA*2	b	WF *3	ØD	ØPCD	Ød	n	s	axial +	axial	lateral ±	angular ±	
	mm	mm	mm	mm ²	mm	mm	mm		mm	mm	mm	mm	∠°	kg
200	250	280	10	53066	340	295	22	8	20	20	40	26	11.3	19.0
250	250	330	10	75439	395	350	22	12	20	20	40	26	9.1	22.5
300	250	384	10	104009	445	400	22	12	20	20	40	28	7.6	25.0
350	250	432	10	133249	505	460	22	16	20	20	44	27	6.5	31.5
400	250	484	10	169007	565	515	26	16	20	20	44	27	5.7	39.5
450	250	532	10	197823	615	565	26	20	28	20	44	27	5.1	51.0
500	250	585	10	241800	670	620	26	20	28	20	44	27	4.6	57.5
600	250	685	10	336785	780	725	30	20	28	20	44	27	3.8	72.5
700	250	786	10	448656	895	840	30	24	28	20	44	26	3.3	88.5
800	300	917	13	617614	1015	950	33	24	28	31	53	34	4.4	115.0
900	300	1017	13	764723	1115	1050	33	28	28	31	53	33	3.9	128.0
1000	300	1117	13	927532	1230	1160	36	28	28	31	53	33	3.5	146.0
1100	300	1217	13	1106041	1345	1270	36	32	28	31	53	33	3.2	168.0
1200	300	1317	13	1300250	1455	1380	39	32	28	41	43	32	3.9	196.0
1300	300	1417	13	1510159	1565	1485	42	32	28	31	53	32	2.7	219.0
1400	300	1517	13	1735768	1675	1590	42	36	28	31	53	31	2.5	241.0
1500	300	1617	13	1977077	1795	1705	48	36	28	31	53	31	2.4	261.0
1600	300	1717	13	2234086	1915	1820	48	40	28	31	53	31	2.2	291.0
1700	300	1817	13	2478817	2015	1920	48	44	33	31	53	30	2.1	380.0
1800	300	1917	13	2765656	2115	2020	48	44	33	31	53	30	2.0	401.0
1900	300	2017	13	3068195	2220	2125	48	48	33	31	53	29	1.9	428.0
2000	300	2117	13	3386434	2325	2230	48	48	33	31	53	29	1.8	455.0
2100	350	2255	15	3851387	2440	2335	56	48	33	43	69	38	2.3	505.0
2200	350	2355	15	4206992	2550	2440	56	52	33	43	69	37	2.2	539.0
2400	350	2555	15	4965302	2760	2650	56	56	33	43	69	36	2.1	600.0
2500	350	2655	15	5368007	2860	2750	56	56	33	43	69	36	2.0	624.0
2600	350	2755	15	5786412	2960	2850	56	60	33	43	69	35	1.9	646.0
2800	350	2955	15	6670322	3180	3070	56	64	33	43	69	34	1.8	726.0
3000	350	3155	15	7617032	3405	3290	62	68	33	43	69	33	1.6	807.0

^{*1} Overall lengths available from 150 mm to 500 mm.

- Maximum size: DN 5000.
- Movement absorption is for a bellow design with 6 bar operating pressure.

Important information

Please note the appropriate f xed point constructions and plain bearings in your piping system, as well as the tolerances as per the FSA Handbook (see technical appendix on p. 118)! For more information please refer to our installation instructions in the technical appendix.

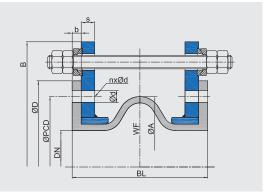
++++ We will be happy to send you further information on the individual types and designs. ++++

^{*2} Outer diameter of corrugation

^{*3} WF = effective area

^{*4} Other standards/dimensions possible.

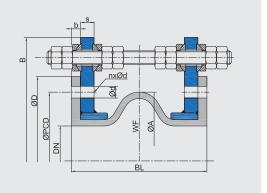
^{*5} Movement absorption be increased by changing the the corrugation and overall length.


Other designs

Design E - with tie rods

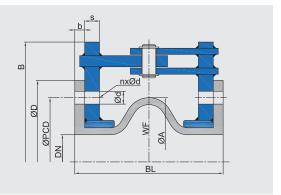
For absorbing the expansion joint's reaction force in the direction of expansion while also absorbing great lateral movement.

The use of PTFE-coated spherical washers and conical sockets reduces the frictional force considerably during lateral movement. Can be used for vibration insulation and absorbing lateral movement.

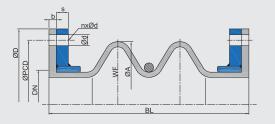

Note: The number of tie rods is calculated corresponding to the available design

Design M - with tie rods/thrust limiters

For absorbing the expansion joint's reaction force in the direction of expansion while also absorbing high lateral movement and preventing the bellow from strong compression. The use of PTFE-coated spherical washers and conical sockets reduces the frictional force considerably during lateral movement. Can be used for vibration insulation and absorbing lateral movement.


Note: The number of tie rods is calculated corresponding to the available design data.

Design F - with hinge


For absorbing angular movement in a single plane while guiding pipes. The hinge absorb the reaction forces so that the f xed point only needs to absorb the adjusting movement

Usually two hinge expansion joints are ftted with an intermediate pipe to achieve a high level of lateral movement (see the example in the technical appendix).

Multi-corrugated bellow designs

Different corrugation geometries and bellow forms (single and multi-corrugated) are available, in order to absorb high axial, lateral and angular movement.

Example - double corrugation, Design A without tie rods

Important information

Please note the appropriate f xed point constructions and plain bearings in your piping system! You can f nd information on this in our installation instructions.

For information on the tie rods, please refer to the technical appendix (p. 89 - 92)!

++++ We will be happy to send you further information on the individual types and designs. ++++

Axial stiffness rates* (single-corrugation)

DN	Length				Stiffnes	s rates (averag	ges value from	full way)			
	BL mm	0 bar N/mm	1 bar N/mm	1.5 bar N/mm	2.5 bar N/mm	3 bar N/mm	4 bar N/mm	5 bar N/mm	6 bar N/mm	10 bar N/mm	16 bar N/mm
200	200	45	79	83	90	108	144	180	216	360	576
250	200	51	88	95	107	127	166	206	246	405	645
300	200	56	98	105	118	139	180	225	269	454	727
350	200	66	117	124	138	164	216	266	317	541	866
400	250	40	70	75	83	99	131	161	190	322	513
450	250	48	85	91	102	119	152	193	235	389	626
500	250	55	99	105	118	135	171	218	265	457	743
600	250	68	119	125	136	163	218	272	326	544	870
700	250	70	121	130	147	174	228	283	338	557	886
750	250	72	126	134	151	178	232	289	346	583	935
800	250	73	129	137	153	182	239	295	350	599	958
850	250	80	141	149	166	198	262	321	380	644	1026
900	300	95	169	180	202	235	300	383	466	770	1239
1000	300	136	245	260	291	335	422	539	656	1129	1836
1050	350	132	251	264	290	352	475	592	710	1171	1867
1100	350	173	328	345	380	461	622	775	929	1534	2445
1200	350	188	360	381	422	511	688	845	1002	1677	2666
1300	350	204	386	405	443	546	751	924	1096	1827	2902
1400	350	220	415	436	477	588	809	995	1180	1967	3126
1500	350	236	455	484	542	652	871	1083	1295	2120	3368
1600	350	310	597	626	685	836	1138	1403	1668	2821	4504
1700	350	374	721	754	818	1018	1416	1726	2036	3438	5459
1800	350	452	873	912	990	1231	1714	2089	2464	4160	6606
2000	350	690	1339	1408	1546	1868	2512	3171	3830	6314	10115
2100	350	791	1523	1609	1780	2134	2841	3636	4431	7288	11735
2200	350	910	1747	1841	2029	2475	3367	4168	4969	8099	12831
2400	350	1050	1995	2118	2363	2846	3812	4751	5691	9450	15089
2500	400	1210	2142	2275	2541	3013	3957	4882	5808	9922	15887
2600	400	1290	2270	2408	2683	3199	4231	5179	6128	10385	16538
2800	400	1420	2528	2693	3025	3512	4487	5723	6958	11502	18517

Lateral stiffness rates* (single-corrugation) Warning: Deviations (+/-25 %) in the stiffness rates may occur due to use of different materials and manufacturing processes.

		to use of different materials and manufacturing processes.										
DN	Length					s rates (average	•	• /				
	BL mm	0 bar N/mm	1 bar N/mm	1.5 bar N/mm	2.5 bar N/mm	3 bar N/mm	4 bar N/mm	5 bar N/mm	6 bar N/mm	10 bar N/mm	16 bar N/mm	
200	200	200	330	342	366	387	428	484	540	616	804	
250	200	220	370	382	407	430	475	540	605	686	898	
300	200	250	425	440	470	495	545	620	695	783	1020	
350	200	280	482	497	529	556	610	696	781	882	1154	
400	250	180	315	326	347	365	400	456	513	576	752	
450	250	190	338	349	371	387	420	478	536	604	789	
500	250	200	330	342	366	387	428	484	540	616	804	
600	250	235	388	402	430	454	503	569	635	724	945	
700	250	310	521	538	574	606	670	761	853	967	1265	
750	250	310	527	546	583	614	676	769	862	970	1265	
800	250	340	585	604	643	675	741	845	949	1071	1401	
850	250	340	595	615	656	689	755	862	969	1088	1421	
900	300	360	641	661	702	733	796	905	1015	1145	1494	
1000	300	380	673	698	749	818	956	1020	1083	1216	1539	
1050	350	390	605	628	675	746	889	971	1053	1201	1513	
1100	350	395	612	636	683	756	901	984	1067	1217	1533	
1200	350	440	724	744	783	864	1025	1111	1197	1390	1756	
1300	350	460	724	763	842	923	1086	1180	1274	1463	1840	
1400	350	480	724	775	878	963	1133	1231	1330	1526	1920	
1500	350	530	885	924	1002	1088	1261	1370	1479	1707	2152	
1600	350	645	1109	1152	1238	1342	1548	1683	1819	2090	2632	
1700	350	710	1299	1330	1392	1508	1740	1885	2031	2308	2876	
1800 2000	350 350	445 890	814	834	872	945	1090	1181	1273	1446	1802	
2100	350	886	1682 1692	1727	1816	1952	2225	2394	2563	2919	3613	
2200	350	1050	2016	1745 2086	1852 2226	2002	2304	2450	2596	2835	3367	
2400	350	1360	2638	2802	3128	2464 3400	2940	3045	3150 4284	3465	3990	
2500	400	1680	2856	2802	3128	3400	3944 3662	4114	-	4529	5114	
2600	400	2035	3500	3616	3846	4043	4436	4166 5057	4670 5678	5258	6854	
2800	400	2760	4830			5594				6410	8384	
2000	400	2/00	4830	4996	5327	5594	6127	6997	7866	8832	11537	

Angular stiffness torque* (single-corrugation)

DN	Length	Stiffness torque (averages value from full way) 0 bar 1 bar 1.5 bar 2.5 bar 3 bar 4 bar 5 bar 6 bar 10 bar 16										
	BL mm	0 bar Nm/°	1 bar Nm/°	1.5 bar Nm/°	2.5 bar Nm/°	3 bar Nm/°	4 bar Nm/°	5 bar Nm/°	6 bar Nm/°	10 bar Nm/°	16 bar Nm/°	
200	200	6	10	11	12	14	18	23	28	46	74	
250	200	10	16	18	20	24	31	38	46	76	120	
300	200	15	25	27	30	36	47	58	70	117	188	
350	200	22	39	42	47	55	73	90	107	183	293	
400	250	17	30	32	36	43	57	69	82	139	221	
450	250	26	45	48	54	63	81	103	125	207	333	
500	250	36	64	68	76	88	110	141	172	296	481	
600	250	62	108	113	123	148	198	247	296	494	790	
700	250	85	147	157	179	211	276	343	410	675	1074	
750	250	99	174	186	209	246	320	399	478	805	1290	
800	250	118	209	222	248	294	386	476	567	968	1550	
850	250	145	255	270	301	359	475	582	688	1166	1857	
900	300	191	341	363	408	473	605	771	938	1551	2496	
1000	300	334	601	639	715	822	1036	1323	1610	2773	4510	
1050	350	355	675	710	781	947	1279	1595	1911	3154	5029	
1100	350	508	965	1016	1117	1354	1828	2281	2733	4510	7192	
1200	350	654	1248	1320	1464	1771	2386	2932	3477	5817	9249	
1300	350	825	1559	1636	1790	2205	3036	3733	4430	7383	11730	
1400	350	1024	1935	2030	2221	2737	3767	4632	5497	9162	14557	
1500	350	1252	2416	2571	2880	3464	4633	5759	6886	11269	17905	
1600	350	1866	3592	3769	4124	5032	6849	8444	10040	16981	27114	
1700	350	2528	4880	5099	5537	6885	9582	11681	13779	23260	36938	
1800	350	3417	6594	6890	7483	9305	12950	15785	18621	31434	49919	
2000	350	6395	12406	13046	14325	17309	23277	29385	35492	58513	93749	
2100	350	8062	15520	16394	18141	21742	28944	37047	45150	74256	119567	
2200	350	10150	19488	20537	22635	27608	37556	46488	55420	90336	143117	
2400	350	13875	26363	27982	31219	37602	50367	62786	75204	124878	199388	
2500	400	17315	30648	32553	36362	43116	56622	69868	83114	141987	227352	
2600	400	19930	35077	37203	41455	49427	65371	80019	94668	160437	255504	
2800	400	25360	45141	48100	54017	62724	80138	102202	124265	205418	330698	

^{*} Example values, depending on bellows structure

Warning: Deviations (+/-25 %) in the stiffness torque may occur due to use of different materials and manufacturing processes.

DN 50 - DN 3000

Type 42 is a handmade, high-corrugated rubber expansion joint. Its high corrugation helps to achieve very low inherent resistance. It is characterised by its flexible installation length and variety of rubber qualities, which means that a suitable rubber compound is available for every application (see material descriptions). The expansion joint can also be produced in high-pressure versions up to 100 bar .

Type 42 is used in plant engineering, water technology and wastewater technology, where it is mainly used in the event of repairs if the existing gap does not correspond to any standard installation length. This avoids expensive full renovation on the piping system. It absorbs noise, vibration and pipe movement.

Bellow design	High corrugated rubber bellow with reinforcement and pressure-resistant shaped solid rubber flanges, self-sealing (no additional seals required).	Pressure resistance	Design according to customer specification, max 100 bar operating pressure.
	Suitable for backing flanges or vulcanised steel flanges (for high-pressure applications).	Vacuum resistance	Only vacuum-resistant with a vacuum supporting ring. Also available as a special version with a vulcanised
Flange version	Both sides with backing or vulcanised flange made of galvanized steel with		vacuum supporting ring on the corrugation foot.
	clearance holes, drilled according to DIN PN 10 (standard). Other materials and dimensions are possible.	Accessories	 Guide sleeves Potential equalisation Flame-resistant protective covers Dust and splash protection covers Earth cover / sun protection hoods Segment tie rods

Specifications

Bellow			Bellow design				F	Permis	sible o	peratin	g data				
Colour code	Colour marking	Core (inner)	Reinforce- ment	Cover (outer)	Max. temperature °C	°C	bar	°C	bar	°C	bar	°C	bar	°C	bar
red		EPDM	Polyamide	EPDM	100										
blue		EPDM TW	Polyamide	EPDM	100										
white/red		EPDM beige	Polyamide	EPDM	100										
red		EPDM AF	Polyamide	EPDM	100										
green		CSM	Polyamide	CSM	100										
yellow-grey		NBR	Polyamide	CR	100										
white-grey		NBR beige	Polyamide	CR	100										
grey		CR	Polyamide	CR	90										
red-blue-red		EPDM	Aramid	EPDM	100		_								
blue-blue-blue		EPDM TW	Aramid	EPDM	100		EX	•	n joints		•		ng to		
white-blue-red		EPDM beige	Aramid	EPDM	100			yo	our ope	rating p	aramet	ters.			
orange-blue-orange		EPDM HT	Aramid	EPDM HT	125					l		I		ı	
red-blue-red		EPDM AF	Aramid	EPDM	100										
green-blue-green		CSM	Aramid	CSM	100										
yellow-blue-grey		NBR	Aramid	CR	100										
white-blue-grey		NBR beige	Aramid	CR	100										
grey-blue-grey		CR	Aramid	CR	90										
lilac-blue-lilac		FPM	Aramid	FPM	180										
-	-	Silicone	Aramid	Silicone	180										
-	-	Silicone	Glass fabric	Silicone	200										

Important information

For aggressive media, please see the resistance table (can be requested separately).

The bellow should not be painted or insulated. Please refer to the installation instructions.

++++ We will be happy to send you further information on the individual types and designs.++++

Application

Type 42 red (EPDM)

For water, sea water, cooling water with glycol or other chemical additives for treating water, saline solutions, weak acids and weak alkaline solutions. Unsuitable for aliphatic, aromatic and chlorinated hydrocarbons, oil or oily media.

Type 42 blue (EPDM TW)

Like Type 42 red, but approved for drinking water.

Type 42 white-red (EPDM beige)

Like Type 42 red, but with light-coloured rubber in food-grade.

Type 42 red AF (EPDM AF)

Like Type 42 red, but with abrasion-resistant EPDM rubber compound.

Type 42 green (CSM)

For chemicals, aggressive, chemical wastewater and compressor air containing oil.

Type 42 yellow-grey (NBR)

For oils, fats, gases, diesel fuels, kerosene and crude oil. Not suitable for aromatic and chlorinated hydrocarbons, esters and ketones.

Type 42 white-grey (NBR beige)

Like Type 42 yellow-grey, but with light-coloured internal rubber in food-grade. Not approved for drinking water!

Type 42 grey (CR)

For water, wastewater, swimming pool water, salt water, cooling water with anti-corrosive products containing oil, oil mixtures and compressed air containing oil.

Type 42 red-blue-red (EPDM/aramid)

Like Type 42 red, but with aramid fabric.

Type 42 blue-blue AF (EPDM TW/aramid)

Like Type 42 blue, but with aramid fabric.

Type 42 white-blue-red AF (EPDM beige/aramid)

Like Type 42 white-red, but with aramid fabric.

Type 42 orange-blue-orange AF (EPDM HT/aramid)

Like Type 42 red, but with aramid fabric and for temperatures up to +125 $^{\circ}$ C.

Type 42 red-blue-red AF (EPDM AF/aramid)

Like Type 42 red AF, but with aramid fabric.

Type 42 red-blue-red AF (EPDM AF/aramid)

Like Type 42 red AF, with aramid fabric.

Type 42 green-blue-green (CSM/aramid)

Like Type 42 green, but with aramid fabric.

Type 42 yellow-blue-grey (NBR/aramid)

Like Type 42 yellow-grey, but with aramid fabric.

Type 42 white-blue-grey (NBR white/aramid)

Like Type 42 white-grey, but with aramid fabric.

Type 42 grey-blue-grey (CR/aramid)

Like Type 42 grey, but with aramid fabric.

Type 42 lilac-blue-lilac (FPM/aramid)

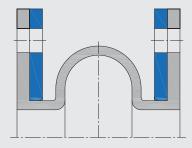
For flue gas desulphurisation systems and bio-diesel. High chemical resistance to benzene, xylene, toluene, aromatic, chlorinated hydrocarbons, mineral acids and fuels with an aromatic content of more than 50 %. Temperatures of up to +180 °C.

Type 42 silicone (silicone/glass fabric or aramid)

Suitable for hot air, acetic acid. Satisfactory resistance to aliphatic engine and gear oils. Also available in foodstuff quality. Excellent resistance to ageing, UV, ozone and weather. Very good radiation resistance. Not for use with steam above 120 °C. No resistance to fuels.

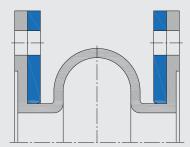
Note!

Detailed material descriptions on pages 5 - 7.

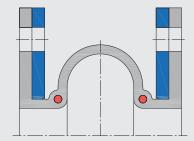

Versions

Type 42 is produced with pressure-resistant solid rubber f anges. In order to ensure a tight connection to the pipe/fan, the counter f ange should be f at and have no raised face. If this is not possible, the expansion joint f ange can be produced with a negative recess (see Versions 2 and 4) in order to accommodate the raised face of the counter f ange and ensure a f at connection.

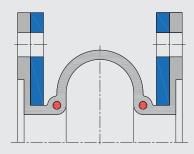
Alternatively, spacer rings can be used.


Version 1

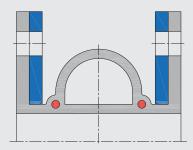
Both sides with pressure-resistant solid rubber f anges for f at counter f anges.


Version 2

Both sides with pressure-resistant solid rubber fanges and negative recess for counter fanges with raised face.


Version 3

Both sides with pressure-resistant solid rubber fanges and vulcanised supporting rings at the corrugation foot.


Version 4

Both sides with pressure-resistant solid rubber f anges and negative recess for counter f anges with raised face and vulcanised supporting rings at the corrugation foot.

Version 5

Both sides with pressure-resistant solid rubber f anges, vulcanised corrugated supporting rings at the corrugation foot and f lled corrugation.

Design A - without tie rods

Can be used for movement absorption in any direction (for combined movements, see the movement diagram in the technical appendix), noise and vibration insulation.

The expansion joint's reaction force must be absorbed via suitable piping (see f tting instructions in the appendix).

(Example illustration - Version 3)

Dimensions for Design A

DN	Overall length		Bellow			Flan	ge PN 10°	*3			Movement a	bsorption*4	
	BL*1	ØA	b	WF *2	ØD	ØPCD	Ød	n	s	axial +	axial -	lateral ±	angular ±
	mm	mm	mm	mm²	mm	mm	mm		mm	mm	mm	mm	∠°
50	200	110	10	6360	165	125	18	4	20	10	20	15	10.0
65	200	125	10	8650	185	145	18	8	20	10	20	15	10.0
80	200	140	10	11300	200	160	18	8	20	10	20	15	10.0
100	200	160	10	15400	220	180	18	8	20	14	34	15	15.6
125	200	185	10	21370	250	210	18	8	20	10	34	15	12.6
150	200	210	10	28830	285	240	22	8	20	10	34	15	10.6
200	250	280	10	53066	340	295	22	8	25	20	34	26	8.0
250	250	330	10	75439	395	350	22	12	25	20	34	26	6.4
300	250	384	10	104009	445	400	22	12	25	20	34	28	5.3
350	250	432	10	133249	505	460	22	16	25	20	34	27	4.6
400	250	484	13	169007	565	515	26	16	25	20	34	27	4.0
450	250	532	13	197823	615	565	26	20	30	20	34	27	3.6
500	250	585	13	241800	670	620	26	20	30	20	34	27	3.2
600	250	685	13	336785	780	725	30	20	30	20	34	27	2.9
700	250	786	13	448656	895	840	30	24	30	20	34	26	2.7
800	300	917	13	617614	1015	950	33	24	30	22	41	34	3.1
900	300	1017	13	764723	1115	1050	33	28	30	22	41	33	2.8
1000	300	1117	13	927532	1230	1160	36	28	30	22	41	33	2.5
1100	300	1217	13	1106041	1345	1270	36	32	30	22	41	33	2.3
1200	300	1317	13	1300250	1455	1380	39	32	30	22	41	32	2.1
1300	300	1417	13	1510159	1565	1485	42	32	30	22	41	32	1.9
1400	300	1517	13	1735768	1675	1590	42	36	30	22	41	31	1.8
1500	300	1617	13	1977077	1795	1705	48	36	30	22	41	31	1.7
1600	300	1717	13	2234086	1915	1820	48	40	30	22	41	31	1.6
1700	300	1817	13	2478817	2015	1920	48	44	35	22	41	30	1.5
1800	300	1917	13	2765656	2115	2020	48	44	35	22	41	30	1.4
1900	300	2017	13	3068195	2220	2125	48	48	35	22	41	29	1.3
2000	300	2117	13	3386434	2325	2230	48	48	35	22	41	29	1.3
2100	350	2255	13	3851387	2440	2335	56	48	35	24	47	38	1.4
2200	350	2355	13	4206992	2550	2440	56	52	35	24	47	37	1.3
2400	350	2555	13	4965302	2760	2650	56	56	35	24	47	36	1.1
2500	350	2655	13	5368007	2860	2750	56	56	35	24	47	36	1.1
2600	350	2755	13	5786412	2960	2850	56	60	35	24	47	35	1.1
2800	350	2955	13	6670322	3180	3070	56	64	35	24	47	34	1.0
3000	350	3155	13	7617032	3405	3290	62	68	35	24	47	33	0.9

^{*1} Overall lengths available from 150 mm to 450 mm.

Important information

Please note the appropriate f xed point constructions and plain bearings in your piping system, as well as the tolerances as per the FSA Handbook (page 118)!

For more information please refer to our installation instructions.

For information on the tie rods, please see the technical appendix (p. 89 - 92)!

++++ We will be happy to send you further information on the individual types and desings. ++++

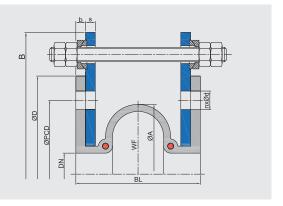
^{*2} WF = effective area

^{*3} Other standards/dimensions possible.

 $^{^{\}star 4}\,\text{Movement}$ absorption be increased by changing the the corrugation and overall length.

⁻ Maximum size: DN 3000.

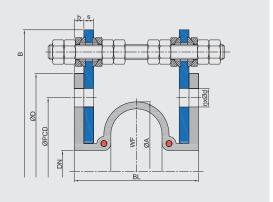
Movement absorption is for a bellow design with 6 bar operating pressure.



Design E - with tie rods

For absorbing the expansion joint's reaction force in the direction of expansion while also absorbing high lateral movement.

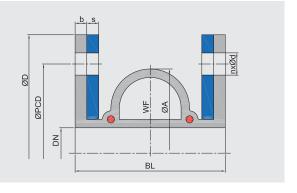
The use of PTFE-coated spherical washers and conical sockets reduces the frictional force considerably during lateral movement. Can be used for vibration insulation and absorbing lateral movement.


Note: The number of tie rods is calculated from the available design data.

Design M - with tie rods/thrust limiters

For absorbing the expansion joint's reaction force in the direction of expansion while also absorbing high lateral movement and preventing the bellow from strong compression. The use of PTFE-coated spherical washers and conical sockets reduces the frictional force considerably during lateral movement. Can be used for vibration insulation and absorbing lateral movement. This design can also be used without spherical washers and conical sockets for dismantling (Design T).

Note: The number of tie rods is calculated from the available design data.



Design A - without tie rods, with f lled corrugation

Can be used for movement absorption in any direction (for combined movements, see the movement diagram in the technical appendix), noise and vibration insulation.

The expansion joint's reaction force must be absorbed via suitable piping (see f tting instructions in the appendix).

Note: Limited movement absorption

Important information

Please note the appropriate f xed point constructions and plain bearings in your piping system! For more information please refer to our installation instructions. For information on the tie rods, please see the technical appendix (p. 89 - 92)!

++++ We will be happy to send you further information on the individual types and designs. ++++

DN 20 (3/4") to DN 50 (2")

Type 46 is a low-corrugated rubber expansion joint. Its low corrugation helps to achieve very low flow resistance. It is also characterised by its considerable axial movement absorption and variety of rubber qualities, which means that a suitable rubber compound is available for every application (see material descriptions).

Type 46 is used in building technology, plant engineering, water management, engine construction and in solar and wind plant engineering, where it is specifically used to absorb expansion and vibration and to insulate noise.

Bellow design	Low-corrugated rubber bellow with reinforcement and shaped sealing bead with core ring, self-sealing (no additional	Vacuum resistance	Can be used for full vacuums without additional measures.
	seals required). Suitable for 3-piece screw connection.	Accessories	- Flame-resistant protective covers - Dust and splash protection covers
Screw connection	Galvanized steel with female or male threads according to DIN EN 10226. Other standards and materials are possible.	Approvals/Conformity	Similar to DIN 4809 / TÜV approved, approved for drinking water, FDA and EG 1935/2004 confirm

Specifications for DN 20 - DN 50

Bellov	V		Bellow design		Permissible operating data						Surface resistance Ro				
Colour code	Colour marking	Core (inner)	Rein- forcement	Cover (outer)									Short- term	Core	Cover
					°C	bar	°C	bar	°C	bar	°C	bar	°C	Ohm x cm	Ohm x cm
red Sp		EPDM	PEEK	EPDM	-40	10	70	16	100	10	130	8	150	4 x 10 ³	4 x 10 ³
red		IIR	Polyamide	EPDM	-40	10	50	16	70	12	100	10	120	7 x 10 ⁶	1 x 10 ³
red EPDM		EPDM	Polyamide	EPDM	-30	10	50	16	70	12	90	10	100	-	-
yellow		NBR	Polyamide	CR	-20	10	50	16	70	12	90	10	100	2×10^2	1 x 10 ³
white		NBR	Polyamide	CR	-20	10	50	16	70	12	90	10	100	7 x 10 ⁹	1 x 10 ³
green		CSM	Polyamide	CSM	-20	10	50	16	70	12	100	10	110	7 x 10 ⁹	7 x 10 ⁹
black EPDM	•	IIR	Polyamide	EPDM	-40	10	50	10	70	8	90	6	120	7 x 10 ⁶	1 x 10 ³
black CR	_	CR	Polyamide	CR	-25	10	50	16	70	12	90	10	100	7 x 10 ⁹	5 x 10 ¹⁰
yellow LT	LT	NBR LT	Polyamide	CR	-40	10	50	16	70	12	90	10	100	1 x 10 ⁴	1 x 10 ³
yellow St		NBR	Steel cord	CR	-20	10	60	16	70	12	90	10	100	2 x 10 ²	5 x 10 ¹⁰
yellow HNBR		HNBR	Steel cord	CR	-35	10	60	16	70	12	100	10	120	1,5 x 10 ⁵	5 x 10 ¹⁰

Important information

For aggressive media, please see the resistance table (can be requested separately).

Please note the appropriate f xed point constructions and plain bearings in your piping system! For more information please refer to our installation instructions.

The bellow must be installed torsion-free and should not be painted or insulated.

Please refer to the installation instructions.

++++ We will be happy to send you further information on the individual types and designs. ++++

Application

Type 46 red Sp

For heating installations according to DIN 4809. For many years of operation under constant loading with hot water and heating water at 100 °C/110 °C at 10 bar/6 bar operating pressure. Electrically conductive surface. Not suitable for media with additives containing oil.

Type 46 red

For drinking water, hot water, sea water, cooling water with chemical additives for treating water, saline solutions, weak acids and weak alkali solutions. Electrically dissipative inner surface and electrically conductive outer surface. Not suitable for oil products or cooling water with additives containing oil.

Type 46 red EPDM

Like Type 46 red, but not for drinking water, shipbuilding and offshore applications. Temperature range max. 90 °C at 10 bar.

Type 46 yellow

For oils, lubricants, fuels, gases, city and natural gas (not liquefied) and DIN EN fuels with an aromatic content up to 50 %. Electrically conductive.

Type 46 white

For foodstuffs containing oil and fat rubber in food-grade. Electrically insulating inner surface and electrically conductive outer surface. Not suitable for drinking water.

Type 46 green

For chemicals, aggressive chemical wastewater and compressor air containing oil. Electrically insulating.

Type 46 black EPDM

For drinking water, sea water, cooling water, weak acids and alkali solutions, technical alcohols, esters and ketones. Electrically dissipative inner surface and electrically conductive outer surface. Max. pressure 10 bar.

Type 46 black CR

For hot and cold water, wastewater, swimming pool water, salt water, wastewater, cooling water with anti-corrosive products containing oil, oil mixtures and compressed air containing oil. Electrically insulating.

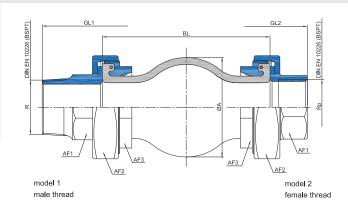
Type 46 yellow LT

Like Type 46 yellow. Also for liquid gas. Electrically dissipative.

Type 46 lilac

For flue gas desulphurisation systems and bio-diesel. Good resistance to benzene, xylene, toluene, fuels with an aromatic content of more than 50 %, aromatic/chlorinated hydrocarbons and mineral acids. Electrically insulating inner surface, electrically conductive outer surface.

Type 46 yellow St


Like Type 46 yellow with additional flame-resistance for up to 30 minutes at 800 °C. Electrically conductive inner surface, electrically insulating outer surface.

Type 46 yellow HNBR

Like Type 46 yellow St, but for temperatures up to +100 $^{\circ}$ C. Electrically dissipative inner surface, electrically insulating outer surface.

Note!

Detailed material descriptions on pages 5 - 7.

Dimensions - polyamide reinforcement

DN	Length	В	ellow		Total	length	W	rench siz	e	М	ovement	absorption	on	Wei	ght
	BL	ØA	WF*	R/RP	GL1	GL2	AF1	AF2	AF3	axial +	axial -	lateral +	angular ±	Design 1	Design 2
	mm	mm	mm ²	Inches	mm	mm	mm	mm	mm	mm	mm	mm	∠°	kg	kg
20	130	81	1700	3/4	214	190	36	80	54	15	30	10	30	2.3	2.5
25	130	81	1700	1	214	182	40	80	54	15	30	10	30	2.4	2.4
32	130	81	1700	1 1/4	240	190	48	80	54	15	30	10	30	2.6	2.1
40	130	86	1800	1 1/2	250	198	53	90	74	15	30	10	30	2.9	2.6
50	130	96	3200	2	260	198	66	110	90	15	30	10	30	4.4	3.9

^{*} WF = effective area

DN 50 - DN 250

Type 48 is a high-corrugated rubber expansion joint. Its high corrugation means that it has very low inherent resistance. It reduces up to 90 % incoming energy . It continues to be characterised by its considerably movement absorption in all directions.

Type 48 is primarily used in industrial applications to absorb expansion and vibration.

Bellow design	High-corrugated rubber bellow with reinforcement and shaped sealing bead, self-sealing (no additional seals required). Suitable for swiveling flanges.	Accessories	Guide sleevesPotential equalisationFlame-resistant protective coversDust and splash protection coversSegment tie rods
Flange version	Both sides with swiveling flange made of galvanized steel, with clearance holes, drilled according to DIN PN 10 (standard). Other materials and dimensions are possible.	Vacuum resistance	Can be used up to -200 mbar without additional measures, full vacuum possible with vacuum supporting spiral/ring.
		Approvals	There are no approvals available.

Specifications

Bellov	v		Bellow design		Permissible operating data							
Colour code	Colour marking	Core (inner)	Reinforcement	Cover (outer)	°C	bar	°C	bar	ം	bar	Short-term °C	Surface resistance Ro Ohm x cm
red		EPDM	Sp. Cord	EPDM	50	16	70	10	100	6	110	7 x 10 ⁴

Bursting pressure DN 50 - 250 > 48 bar

Important information

For aggressive media, please see the resistance table (can be requested separately).

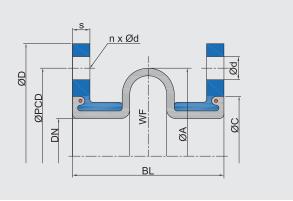
The bellows should not be painted or insulated. Please refer to the installation instructions.

++++ We will be happy to send you further information on the individual types and designs. ++++

Application

Type 48 red

For hot water, sea water, cooling water with chemical additives for treating water, saline solutions, weak acids and weak alkali solutions. Very good resistance to steam, excellent resistance to swelling and chemicals (diluted acids, alkalis, acetone and alcohol). Not suitable for oil products or cooling water with additives containing oil.


Note!

Detailed material descriptions on pages 5 - 7.

Design A - without tie rods

Can be used for movement absorption in any direction (for combined movements, see the movement diagram in the technical appendix), noise and vibration insulation.

The expansion joint's reaction force must be absorbed via suitable piping.

Dimensions

Length	В	ellow			Flange	PN 10*2			Movement absorption				Weight
BL	ØA	WF*1	ØD	ØPCD	Ød	n	s	ØC	axial +	axial -	lateral ±	angular ±	
mm	mm	mm ²	mm	mm	mm		mm	mm	mm	mm	mm	∠°	kg
150	133	11900	165	125	18	4	16	96	25	25	20	30	5.4
150	147	14700	185	145	18	8	16	116	25	25	20	30	6.7
150	167	19400	200	160	18	8	18	133	25	25	20	30	7.5
155	197	27500	220	180	18	8	18	153	40	30	25	30	8.9
155	248	44500	285	240	23	8	20	203	45	35	25	20	15.9
160	292	62400	340	295	23	8	20	261	45	35	25	20	20.7
160	340	85500	395	350	23	12	20	310	45	35	25	20	27.8
	mm 150 150 150 155 155 160	BL ØA mm mm 150 133 150 147 150 167 155 197 155 248 160 292	BL ØA WF*1 mm mm mm² 150 133 11900 150 147 14700 150 167 19400 155 197 27500 155 248 44500 160 292 62400	BL ØA WF*1 ØD mm mm mm² mm 150 133 11900 165 150 147 14700 185 150 167 19400 200 155 197 27500 220 155 248 44500 285 160 292 62400 340	BL ØA WF*1 ØD ØPCD mm mm mm² mm mm 150 133 11900 165 125 150 147 14700 185 145 150 167 19400 200 160 155 197 27500 220 180 155 248 44500 285 240 160 292 62400 340 295	BL ØA WF*1 ØD ØPCD Ød mm mm mm mm mm mm 150 133 11900 165 125 18 150 147 14700 185 145 18 150 167 19400 200 160 18 155 197 27500 220 180 18 155 248 44500 285 240 23 160 292 62400 340 295 23	BL ØA WF*1 ØD ØPCD Ød n mm mm mm mm mm mm 150 133 11900 165 125 18 4 150 147 14700 185 145 18 8 150 167 19400 200 160 18 8 155 197 27500 220 180 18 8 155 248 44500 285 240 23 8 160 292 62400 340 295 23 8	BL ØA WF*1 ØD ØPCD Ød n s mm mm mm mm mm mm mm mm 150 133 11900 165 125 18 4 16 150 147 14700 185 145 18 8 16 150 167 19400 200 160 18 8 18 155 197 27500 220 180 18 8 18 155 248 44500 285 240 23 8 20 160 292 62400 340 295 23 8 20	BL ØA WF*1 ØD ØPCD Ød n s ØC mm 166 166	BL mm ØA mm WF*1 mm ØD mm ØPCD mm Ød mm n mm s mm mm ØC mm mm axial mm mm 150 133 11900 165 125 18 4 16 96 25 150 147 14700 185 145 18 8 16 116 25 150 167 19400 200 160 18 8 18 133 25 155 197 27500 220 180 18 8 18 153 40 155 248 44500 285 240 23 8 20 203 45 160 292 62400 340 295 23 8 20 261 45	BL mm ØA mm WF*1 mm ØD mm ØPCD mm Ød mm n mm s mm ØC mm axial + mm mm axial + mm 150 133 11900 165 125 18 4 16 96 25 25 150 147 14700 185 145 18 8 16 116 25 25 150 167 19400 200 160 18 8 18 133 25 25 155 197 27500 220 180 18 8 18 153 40 30 155 248 44500 285 240 23 8 20 203 45 35 160 292 62400 340 295 23 8 20 261 45 35	BL mm ØA WF*1 mm ØD ØPCD mm Ød mm n s ØC mm axial + mm axial + mm lateral ± mm 150 133 11900 165 125 18 4 16 96 25 25 20 150 147 14700 185 145 18 8 16 116 25 25 20 150 167 19400 200 160 18 8 18 133 25 25 20 155 197 27500 220 180 18 8 18 153 40 30 25 155 248 44500 285 240 23 8 20 203 45 35 25 160 292 62400 340 295 23 8 20 261 45 35 25	BL mm ØA mm WF*1 mm ØD mm ØPCD mm Ød mm n mm s mm mm ØC mm mm axial + mm mm axial + mm </th

^{*1} WF = effective area

Permissible degree of utilisation for movement areas: - up to 50 $^{\circ}\text{C}$: Utilisation ~ 100 %

- up to 70 °C: Utilisation ~ 75 % - up to 90 °C: Utilisation ~ 60 %

Important information

Please note the appropriate f xed point constructions and plain bearings in your piping system! For more information please refer to our installation instructions.

For information on the tie rods, please see the technical appendix (p. 89 - 92)!

++++ We will be happy to send you further information on the individual types and designs. ++++

^{*2} Other standards/dimensions possible.

DN 32 - DN 500

Type 49 is a high-corrugated, highly elastic rubber expansion joint. Its high corrugation means that it has very low inherent resistance. It reduces up to 98 % of structure-borne noise. It is also characterised by very high movement absorption for a short installation length and variety of rubber qualities, which means that a suitable rubber compound is available for every application (see material descriptions).

Type 49 is primarily used in building technology, where it is used to absorb expansion, vibration and to insulate sound. It is also used in industrial applications, particularly in the field of weighing technology. Its very low inherent resistance makes it very suitable for decoupling scales / load cells.

Bellow design	High-corrugated rubber bellow with reinforcement and shaped sealing bead with core ring, self-sealing (no additional seals required). Suitable for swiveling flanges.	Flange version	Both sides with swiveling flange made of galvanized steel with threaded holes, drilled according to DIN PN 10 (standard). Other materials and dimensions are possible.
Vacuum resistance	Can be used up to -200 mbar without additional accories, full vacuum possible with vacuum supporting spiral/ring.	Approvals/Conformity	Similar to DIN 4809 / TÜV approved, drinking water and shipbuilding approval, FDA and EG 1935/2004 conform

Specifications for DN 32 - DN 500

Bello	w		Bellow design				F	Permiss	ible op	erating	data			Surface res	sistance Ro
Colour code	Colour marking	Core (inner)	Rein- forcement	Cover (outer)	°C	bar	°C	bar	°C	bar	°c	bar	Short- term °C	Core Ohm x cm	Cover Ohm x cm
					U	Dai			_	Dai	-		-	Offilit X Citi	OHIII X CHI
A-red		EPDM	PEEK	EPDM	-40	16	70	25	100	18	130	12	150	4 x 10 ³	4 x 10 ³
blue		IIR	Polyamide	EPDM	-40	16	50	25	70	18	100	12	120	7 x 10 ⁶	1 x 10 ³
yellow		NBR	Polyamide	CR	-20	16	50	25	70	18	90	12	100	2 x 10 ²	1 x 10 ³
white		NBR	Polyamide	CR	-20	16	50	25	70	18	90	12	100	7 x 10 ⁹	1 x 10 ³
green		CSM	Polyamide	CSM	-20	16	50	25	70	18	100	12	110	7 x 10 ⁹	7 x 10 ⁹
black EPDM*		IIR	Polyamide	EPDM	-40	10	50	10	70	8	90	6	120	7 x 10 ⁶	1 x 10 ³

*black EPDM max. DN 200

Bursting pressure: 75 bar black EPDM 30 bar

Important information

For aggressive media, please see the resistance table (can be requested separately).

The bellows should not be painted or insulated. Please refer to the installation instructions.

++++ We will be happy to send you further information on the individual types and designs. ++++

Application

Type 49 A-red

For heating installations according to DIN 4809. For many years of operation under constant loading with hot water and heating water at 100 °C/110 °C at 10 bar/6 bar operating pressure. Electrically conductive surface. Not suitable for media with additives containing oil.

Type 49 blue

For drinking water, hot water, sea water, cooling water with chemical additives for treating water, saline solutions, weak acids and weak alkaline solutions. Not suitable for oil products or cooling water with additives containing oil. Electrially dissipative inner surface and electrically conductive outer surface.

Type 49 yellow

For oils, lubricants, fuels, gases, city and natural gas (not liquefied). Electrically conductive surface.

Type 49 white

For foodstuffs containing oil and fat (rubber in food-grade). Electrically insulating inner surface, electrically conductive outer surface. Not suitable for drinking water.

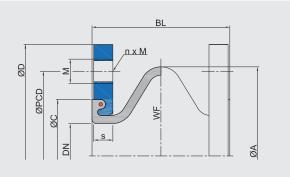
Type 49 green

For chemicals, aggressive chemical wastewater and compressor air containing oil. Electrically insulating sufrace.

Type 49 black EPDM

For hot and cold water, sea water, cooling water, weak acids and alkali solutions, technical alcohols, esters and ketones. Electrically dissipative inner surface, conductive outer surface.

Max. pressure 10 bar.


Note!

Detailed material descriptions on pages 5 - 7.

Design A - without tie rods

Can be used for movement absorption in any direction (for combined movements, see the movement diagram in the technical appendix), noise and vibration insulation.

The expansion joint's reaction force must be absorbed via suitable piping.

Dimensions for Design A

DN	Length	Ве	ellow			Flange	PN 10*2				Movement	absorption		Weight
	BL	ØA	WF*1	ØD	ØPCD	M	n	s	ØС	axial +	axial -	lateral ±	angular ±	
	mm	mm	mm ²	mm	mm			mm	mm	mm	mm	mm	∠°	kg
32	100	110	1800	140	100	M16	4	16	79	20	30	30	7	3.0
40	100	110	1800	150	110	M16	4	16	79	20	30	30	7	3.6
50	100	120	3500	165	125	M16	4	16	89	20	30	30	7	4.4
65	100	135	5600	185	145	M16	8	16	104	20	30	30	7	5.3
80	100	150	8700	200	160	M16	8	18	119	20	30	30	7	6.5
100	100	170	13000	220	180	M16	8	18	142	20	30	30	7	7.3
125	100	195	19000	250	210	M16	8	18	169	20	30	30	7	8.9
150	100	260	26300	285	240	M20	8	20	195	20	30	30	7	12.3
200	100	310	41600	340	295	M20	8	20	245	20	30	30	7	16.2
250	100	360	60700	395	350	M20	12	20	295	20	30	30	7	20.3
300	100	410	83000	445	400	M20	12	20	345	20	30	30	7	23.1
350	100	460	110000	505	460	M20	16	20	396	20	30	30	7	30.1
400	110	515	138500	565	515	M24	16	25	450	20	30	30	7	43.2
500	110	615	209100	670	620	M24	20	25	550	20	30	30	7	53.8

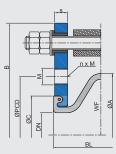
^{*1} WF = effective area

^{*2} Other standards/dimensions possible.

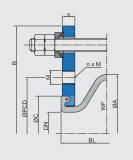
Permissible degree of utilisation for movement areas:

⁻ up to 50 °C: Utilisation ~ 100 % - up to 70 °C: Utilisation ~ 75 % - up to 90 °C: Utilisation ~ 60 %

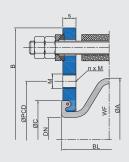
Length limiters


Design B*

with tie rods


There is a selection of various length limiters / tie rods to absorb the reaction force and to protect the bellow from overstretching or collapsing:

nxM

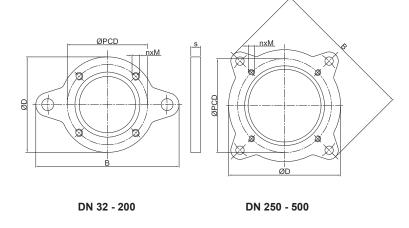


Design E with tie rods and spherical washers/conical sockets

Design S

with tie rods/thrust limiters and spherical washers/conical sockets

*Note: In Designs B and C the lateral movement absorption is reduced by around 50 %.


Accessories

- Vacuum supporting spirals / rings
- Guide sleeves
- Potential equalisation

- Flame-resistant protective covers
- Dust and splash protection covers
- Earth cover hoods

Flange dimensions for designs with tie rods

DN	Length		Flange	PN 10 (exampl	e dimer	nsions)	
	BL	В	ØD	ØPCD	M	n	s	ØС
	mm	mm	mm	mm			mm	mm
32	100	230	140	100	M16	4	16	79
40	100	240	150	110	M16	4	16	79
50	100	255	165	125	M16	4	16	89
65	100	275	185	145	M16	8	16	104
80	100	290	200	160	M16	8	18	119
100	100	310	220	180	M16	8	18	142
125	100	340	250	210	M16	8	18	169
150	100	375	285	240	M20	8	20	195
200	100	440	340	295	M20	8	20	245
250	100	509	395	350	M20	12	20	295
300	100	559	445	400	M20	12	20	345
350	100	619	505	460	M20	16	20	396
400	110	700	565	515	M24	16	25	450
500	110	810	670	620	M24	20	25	550

Important information

Various bolt packs (SU) are available for the standard design.

Please note the appropriate f xed point constructions and plain bearings in your piping system! For more information please refer to our installation instructions.

For information on the tie rods, please see the technical appendix (p. 89 - 92)!

++++ We will be happy to send you further information on the individual types and designs. ++++

Axial stiffness rates

DN	Length				Stiffness rate	s (average value	e form full way)			
	BL mm	0 bar N/mm	1 bar N/mm	2.5 bar N/mm	3 bar N/mm	6 bar N/mm	10 bar N/mm	12 bar N/mm	16 bar N/mm	25 bar N/mm
32	100	14	30	56	62	116	180	210	264	390
40	100	14	30	56	62	116	180	210	264	390
50	100	12	30	66	76	142	220	260	332	512
65	100	14	45	87	99	189	286	346	414	621
80	100	33	75	135	150	258	396	460	555	796
100	100	28	80	156	176	320	480	563	684	998
125	100	30	95	186	218	374	580	672	819	1216
150	100	35	68	144	248	320	528	626	792	1192
200	100	42	90	178	204	370	594	702	908	1385
250	100	20	112	224	256	480	768	906	1136	1680
300	100	22	108	236	277	520	854	1019	1338	2071
350	100	28	128	270	310	570	940	1136	1510	2369
400	110	44	140	296	342	646	1052	1296	1660	2587
500	110	46	172	354	416	792	1264	1524	2000	3116

Warning: Deviations (+/-25 %) in the stiffness rates may occur due to use of different materials and manufacturing processes.

Lateral stiffness rates

DN	Length				Stiffness rate	s (average value	e form full way)			
	BL mm	0 bar N/mm	1 bar N/mm	2.5 bar N/mm	3 bar N/mm	6 bar N/mm	10 bar N/mm	12 bar N/mm	16 bar N/mm	25 bar N/mm
32	100	11	17	27	30	45	63	68	79	109
40	100	11	17	27	30	45	63	68	79	109
50	100	17	35	47	54	79	107	117	138	191
65	100	21	37	61	61	96	136	150	177	250
80	100	32	56	92	94	144	204	225	266	376
100	100	38	77	112	123	180	243	266	312	430
125	100	45	88	133	150	225	315	348	415	586
150	100	48	80	116	123	188	265	292	347	489
200	100	103	155	221	238	343	473	526	633	894
250	100	126	208	179	308	442	603	659	771	1067
300	100	167	267	337	400	550	750	836	1008	1421
350	100	137	263	385	418	587	833	922	1100	1562
400	110	187	293	423	457	633	900	996	1187	1686
500	110	203	380	536	573	840	1140	1249	1466	2029

Warning: Deviations (+/-25 %) in the stiffness rates may occur due to use of different materials and manufacturing processes.

Angular stiffness torque

DN	Length				Stiffness torqu	ıe (averages valu	ie from full way)			
	0 bar mm	0 bar Nm/°	1 bar Nm/°	2.5 bar Nm/°	3 bar Nm/°	6 bar Nm/°	10 bar Nm/°	12 bar Nm/°	16 bar Nm/°	25 bar Nm/°
32	100	0.1	0.3	0.6	0.6	1.2	1.8	1.6	1.7	1.8
40	100	0.1	0.3	0.6	0.6	1.2	1.8	1.6	1.7	1.8
50	100	0.2	0.4	0.9	1.0	1.9	2.9	2.1	2.3	2.4
65	100	0.3	0.8	1.6	1.8	3.5	5.3	3.5	3.7	3.9
80	100	0.8	1.9	3.4	3.8	6.5	10.0	4.3	4.6	4.9
100	100	1.0	2.9	5.7	6.4	11.6	17.4	8.8	9.5	10.1
125	100	1.6	5.0	9.8	11.4	19.6	30.4	14.0	15.0	16.0
150	100	0.7	5.9	12.5	21.5	27.8	45.9	25.3	27.1	28.9
200	100	5.7	12.1	24.0	27.5	49.9	80.0	51.3	55.0	58.6
250	100	4.0	22.1	44.3	50.6	94.9	151.8	83.5	89.4	95.3
300	100	5.9	28.8	62.9	73.8	138.6	227.6	119.0	127.4	135.8
350	100	9.9	45.1	95.2	109.3	201.0	331.4	209.7	224.5	239.4
400	110	19.7	62.8	132.8	153.5	289.9	472.1	329.3	352.5	375.8
500	110	30.9	115.4	237.5	279.1	531.3	848.0	580.8	624.9	662.9

Warning: Deviations (+/-25 %) in the stiffness torque may occur due to use of different materials and manufacturing processes.

DN 20 - DN 1000

Type 50 is a low-corrugated, highly elastic rubber expansion joint. Its low corrugation helps to achieve very low flow resistance. It reduces up to 70 % of the incoming energy . It is also characterise by very high movement absorption in all directions and variety of rubber qualities, which means that a suitable rubber compound is available for every application.

Type 50 is used in building technology, plant engineering, water and wastewater technology, engine construction, shipbuilding and in solar and and wind plant engineering. It especially used where it is specifically used to absorb expansion and vibration and to insulate sound.

Bellow design

Low-corrugated rubber bellow with reinforcement and shaped sealing bead with core ring, self-sealing (no additional seals required). Suitable for accommodating swiveling flanges. Flange version

Both sides with swiveling flange made of galvanized steel with clearance holes, drilled according to DIN PN 10 (standard). Other materials and dimensions are possible.

Approvals/Conformity

Similar to DIN 4809 / TÜV approved, drinking water and shipbuilding approval, FDA and EG 1935/2004 conform

Specifications for DN 20 - DN 400

Bellov	v		Bellow design		up to			Per	missik	ole ope	rating	data			Surface res	sistance Ro
Colour code	Colour marking	Core (inner)	Rein- forcement	Cover (outer)	DN									Short- term	Core	Cover
						°C	bar	°C	bar	°C	bar	°C	bar	°C	Ohm x cm	Ohm x cm
red Sp		EPDM	PEEK	EPDM	400	-40	10	70	16	100	10	130	8	150	4 x 10 ³	4 x 10 ³
red		IIR	Polyamide	EPDM	400	-40	10	50	16	70	12	100	10	120	7 x 10 ⁶	1 x 10 ³
red EPDM		EPDM	Polyamide	EPDM	400	-30	10	50	16	70	12	90	10	100		
yellow		NBR	Polyamide	CR	400	-20	10	50	16	70	12	90	10	100	2×10^2	1 x 10 ³
white		NBR	Polyamide	CR	400	-20	10	50	16	70	12	90	10	100	7 x 10 ⁹	1 x 10 ³
green		CSM	Polyamide	CSM	400	-20	10	50	16	70	12	100	10	110	7 x 10 ⁹	7 x 10 ⁹
orange		NBR	Polyamide	CR	200	-20	10	50	25	70	20	90	15	100	3 x 10 ³	1 x 10 ³
black EPDM*	•	IIR	Polyamide	EPDM	150	-40	10	50	10	70	8	90	6	120	7 x 10 ⁶	1 x 10 ³
black CR	_	CR	Polyamide	CR	400	-25	10	50	16	70	12	90	10	100	7 x 10 ⁹	5 x 10 ¹⁰
yellow LT	LT	NBR-LT	Polyamide	CR	300	-40	10	50	16	70	12	90	10	100	1 x 10 ⁴	4×10^3
yellow St		NBR	Steel cord	CR	400	-20	10	60	16	70	12	90	10	100	2×10^2	5 x 10 ¹⁰
yellow HNBR		HNBR	Steel cord	CR	300	-35	10	60	16	70	12	100	10	120	1,5 x 10 ⁵	- 10 ¹⁰
BR	•	BR/NR	Polyester cord	BR/NR	300	-50	10	50	16	70	12	-	-	90		-

Bursting pressure DN 20 - 400 > 48 bar

For pressure loss see technical appendix.

Specifications for DN 450 - DN 1000

Bellov	v		Bellow design		up to			Per	missil	ole ope	rating	data			Surface res	sistance Ro
Colour code	Colour marking	Core (inner)	Rein- forcement	Cover (outer)	ĎŇ			°C		°C		°C		Short- term	Core	Cover
						°C	bar	°C	bar	°C	bar	°C	bar	°C	Ohm x cm	Ohm x cm
red Sp		EPDM	PEEK	EPDM	1000	-40	8	70	10	100	7,5	130	6	150	4×10^3	4 x 10 ³
red		IIR	Polyamide	EPDM	1000	-40	8	50	10	70	8	100	6	120	7 x 10 ⁶	1 x 10 ³
red EPDM		EPDM	Polyamide	EPDM	600	-30	8	50	10	70	8	90	6	100		
yellow		NBR	Polyamide	CR	1000	-20	8	50	10	70	8	90	6	100	2×10^2	1 x 10 ³
white		NBR	Polyamide	CR	600	-20	8	50	10	70	8	90	6	100	7 x 10 ⁹	1 x 10 ³
green		CSM	Polyamide	CSM	1000	-20	8	50	10	70	8	100	6	110	7 x 10 ⁹	7 x 10 ⁹
black CR	_	CRN	Polyamide	CR	1000	-25	8	50	10	70	8	90	6	100	7 x 10 ⁹	5 x 10 ¹⁰
yellow St		NBR	Steel cord	CR	600	-20	8	60	10	70	8	90	6	100	2 x 10 ²	5 x 10 ¹⁰

Bursting pressure DN 450 - 1000 > 30 bar

For pressure loss see technical appendix.

Important information

For aggressive media, please see the resistance table (can be requested separately).

The bellows should not be painted or insulated. Please refer to the installation instructions.

++++ We will be happy to send you further information on the individual types and designs. ++++

^{*} Bursting pressure max. 30 bar, max. DN 150

Vacuum resistance

- DN 20 to 50 vacuum-resistant without additional accessories
- DN 65 to 250 without additional accessories to -300 mbar and with vacuum supporting spiral for full
- DN 300 to DN 1000 only vacuumresistant with vacuum supporting ring
- Type 50 black EPDM DN 20 to DN 40 without additional accessories

to -300 mbar and with vacuum supporting spiral for full vacuum

Accessories

- Guide sleeves
- Potential equalisation
- Flame-resistant protective covers
- Dust and splash protection covers
- Earth cover / sun protection hoods
- Segment tie rods

Application

Type 50 red Sp

For heating installations according to DIN 4809. For many years of operation under constant loading with hot water and heating water at 100 °C/110 °C at 10 bar/6 bar operating pressure. Electrically conductive surface. Not suitable for media with additives containing oil.

Type 50 red

For drinking water, hot water, sea water, cooling water with chemical additives for treating water, saline solutions, weak acids and weak alkaline solutions. Electrically dissipative inner surface and electrically conductive outer surface. Not suitable for oil products or cooling water with additives containing oil.

Type 50 red EPDM

Like Type 50 red, but not for drinking water, shipbuilding and offshore applications. Temperature range max. 90 °C at 10 bar.

Type 50 yellow

For oils, lubricants, fuels, gases, city and natural gas (not liquefied) and DIN EN fuels with an aromatic content up to 50 %. Electrically conductive.

Type 50 white

For foodstuffs containing oil and fat (rubber in food-grade). Not approved for drinking water. Electrically insulating inner surface and electrically conductive outer surface.

Type 50 green

For chemicals, aggressive chemical wastewater and compressor air containing oil. Electrically insulating.

Type 50 orange

Like Type 50 yellow, but also for liquid petroleum gas acc. to DIN EN 589. Electrically dissipative.

Type 50 black EPDM

For drinking water, sea water, cooling water, weak acids and alkali solutions, technical alcohols, esters and ketones. Max. pressure 10 bar. Electrically dissipative inner surface and electrically conductive outer surface.

Type 50 black CR

For hot and cold water, wastewater, swimming pool water, salt water, wastewater, cooling water with anti-corrosive products containing oil, oil mixtures and compressed air containing oil. Electrically insulating.

Type 50 yellow LT

Like Type 50 yellow, but also for liquid gas. Electrically dissipative.

Type 50 lilac

For flue gas desulphurisation systems and bio-diesel. Good resistance to benzene, xylene, toluene, fuels with an aromatic content of more than 50 %, aromatic/chlorinated hydrocarbons and mineral acids. Electrically insulating inner surface and electrically conductive outer surface.

Type 50 yellow St

Like Type 50 yellow with additional flame-resistance for up to 30 minutes at 800 $^{\circ}$ C. Electrically conductive inner surface, electrically insulating outer surface.

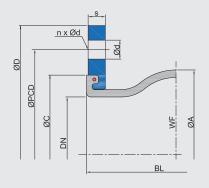
Type 50 yellow HNBR

Like Type 50 yellow St, but for temperatures up to +100 °C. Electrically dissipative inner surface, electrically insulating outer surface.

Type 50 BI

Especially for abrasive media such as sludges, dustlike and powdery media, liquids with solids and emulsions. Also suitable for all kinds of water, as well as various chemicals. Not suitable for oil based products and cooling water with oily additives. Electrically dissipative.

Note!


Detailed material descriptions on pages 5 - 7.

Design A - without tie rods

Can be used for movement absorption in any direction (for combined movements, see the movement diagram in the technical appendix), noise and vibration insulation.

The expansion joint's reaction force must be absorbed via suitable piping.

Dimensions for Design A

				•														
DN	Length	Ве	llow		F	lange P	N 10*2			Мо	vement	absorp	tion	М	ovemen	t absorp	tion	Weight
										((polyam	ide cord	,		(stee	el cord)		
	BL	ØA	WF*1	ØD	ØPCD	Ød	n	s	ØС	axial +	axial	lateral ±	angular ±	axial +	axial	lateral ±	angular ±	
	mm	mm	mm ²	mm	mm	mm		mm	mm	mm	mm	mm	<u>∗</u> ∠°	mm	mm	mm	<u>-</u> ∠°	kg
20	130	81	1700	105	75	12	4	14	66	30	30	30	30	15	30	15	20	1.5
25	130	81	1700	115	85	14	4	14	66	30	30	30	30	15	30	15	20	1.9
32	130	81	1700	140	100	18	4	15	66	30	30	30	30	15	30	15	20	3.1
40	130	86	1800	150	110	18	4	15	74	30	30	30	30	15	30	15	20	3.5
50	130	96	3200	165	125	18	4	16	86	30	30	30	30	15	30	15	20	3.7
65	130	111	5300	185	145	18	8	16	106	30	30	30	30	15	30	15	20	5.3
80	130	122	8500	200	160	18	8	18	118	30	30	30	30	15	30	15	20	6.8
100	130	142	12800	220	180	18	8	18	138	30	30	30	20	15	30	15	15	7.9
125	130	168	18700	250	210	18	8	18	166	30	30	30	20	15	30	15	15	9.6
150	130	192	25900	285	240	22	8	18	192	30	30	30	20	15	30	15	15	12.9
200	130	252	41000	340	295	22	8	20	252	30	30	30	12	20	15	10	5	16.2
250	130	302	59600	395	350	22	12	20	304	30	30	30	12	20	15	10	5	21.5
300	130	354	82200	445	400	22	12	22	354	30	30	30	12	20	15	10	5	24.5
350	200	420	117600	505	460	22	16	24	412	30	50	30	8	30	30	25	10	38.3
400	200	480	154700	565	515	26	16	25	470	30	50	30	8	30	40	25	5	38.0
450	200	530	204200	615	565	26	20	28	520	30	50	30	8	-	-	-	-	47.2
500	200	580	227900	670	620	26	20	30	570	30	50	30	8	-	-	-	-	56.5
600	200	680	311500	780	725	30	20	30	675	30	50	30	8	-	-	-	-	75.2
700	*3250	800	434200	895	840	30	24	35	780	30	50	30	8	-	-	-	-	127.8
800	250	880	527400	1015	950	33	24	40	887	30	50	30	6	-	-	-	-	161.0
900	300	1038	737900	1115	1050	33	28	40	987	30	50	30	5	-	-	-	-	196.7
1000	300	1138	889400	1230	1160	36	28	40	1087	30	50	30	5	-	-	-	-	234.5

^{*1} WF = effective area

Permissible degree of utilisation for movement areas:

- up to 50 °C: Utilisation ~ 100 % - up to 70 °C: Utilisation ~ 75 % - up to 90 °C: Utilisation ~ 60 %

Important information

Please note the appropriate f xed point constructions and plain bearings in your piping system! For more information please refer to our installation instructions.

For information on the tie rods, please see the technical appendix (p. 89 - 92)!

++++ We will be happy to send you further information on the individual types and designs. ++++

^{*2} Other standards/dimensions possible.

^{*3} Building length 260 mm

Length limiters

There is a selection of various length limiters / tie rods to absorb the reaction force and to protect the bellow from overstretching or collapsing: Design B* Design C* Design E Design M with tie rods with tie rods/thrust limiters with tie rods and spherical with tie rods/thrust limiters washers/conical sockets and spherical washers/conical sockets n x Ød Design F with hinge *Note: For Designs B and C the lateral movement absorption is reduced by around 50 %.

ØPCD

Flange dimensions for Designs with tie rods

l dn l	Length		Flange	PN 10 (exampl	e dimer	nsions)	
	BL	В	ØD	ØPCD		n	s	øс
	mm	mm	mm	mm	mm		mm	mm
20	130	189	105	75	12	4	14	66
25	130	205	115	85	14	4	14	66
32	130	230	140	100	18	4	15	66
40	130	240	150	110	18	4	15	74
50	130	255	165	125	18	4	16	86
65	130	275	185	145	18	8	16	106
80	130	290	200	160	18	8	18	118
100	130	310	220	180	18	8	18	138
125	130	340	250	210	18	8	18	166
150	130	375	285	240	22	8	18	192
200	130	440	340	295	22	8	20	252
250	130	509	395	350	22	12	20	304
300	130	559	445	400	22	12	22	354
350	200	619	505	460	22	16	24	412
400	200	700	565	515	26	16	25	470
450	200	760	615	565	26	20	30	520
500	200	810	670	620	26	20	30	570
600	200	930	780	725	30	20	30	675
700	*250	1045	895	840	30	24	35	780
800	250	1175	1015	950	33	24	40	887
900	300	1285	1115	1050	33	28	40	987
1000	300	1400	1230	1160	36	28	40	1087

DN 32 - 200

DN 250 - 900

DN 250 - 900

DN 250 - 1000 (Design F)

n x Ød

^{*} Building length 260 mm

Axial stiffness rates

DN	Overall length		5	Stiffness rates (average	ges value from full way)	
	BL mm	0 bar Nm/mm	2,5 bar Nm/mm	4 bar Nm/mm	6 bar Nm/mm	10 bar Nm/mm	16 bar Nm/mm
20	130	31	68	128	192	243	270
25	130	31	68	128	192	243	270
32	130	31	68	128	192	243	270
40	130	30	66	124	186	236	261
50	130	25	51	98	134	173	192
65	130	24	53	100	150	190	211
80	130	28	58	104	148	185	205
100	130	35	71	116	206	274	304
125	130	36	71	137	214	282	313
150	130	49	102	189	293	390	433
200	130	100	180	365	568	735	816
250	130	105	207	388	609	778	864
300	130	123	248	448	658	883	980
350	200	105	177	349	567	753	836
400	200	154	261	516	535	1090	1210
450	250	167	320	581	903	1162	1290
500	200	196	376	686	1060	1364	1514
600	200	208	292	692	1123	1441	1600
700	*250	140	198	521	714	954	-
800	250	180	270	594	975	1258	-
900	300	200	380	690	1080	1395	-
1000	300	225	420	742	1248	1568	-

^{*} Building length 260 mm

Warning: Deviations (+/- 25 %) in the stiffness rates may occur due to use of different materials and manufacturing processes.

Lateral stiffness rates

DN	Overall length		\$	Stiffness rates (averag	ges value from full way)	
	BL mm	0 bar Nm/mm	2,5 bar Nm/mm	4 bar Nm/mm	6 bar Nm/mm	10 bar Nm/mm	16 bar Nm/mm
20	130	64	125	184	240	240	300
25	130	64	125	184	240	240	300
32	130	64	125	184	240	240	300
40	130	62	121	178	233	256	291
50	130	50	65	80	105	145	205
65	130	40	78	115	150	165	188
80	130	35	74	136	155	173	200
100	130	55	88	143	168	192	228
125	130	100	200	261	293	383	518
150	130	120	260	309	366	466	616
200	130	323	723	836	949	1219	1624
250	130	379	806	1022	1173	1479	1938
300	130	392	837	1068	1216	1542	2031
350	200	305	610	762	875	1098	1433
400	200	338	642	817	946	1199	1579
450	250	342	639	821	971	1200	1544
500	200	426	818	1048	1204	1495	1932
600	200	456	834	1062	1295	1586	2023
700	*250	516	939	1191	1449	1775	-
800	250	558	960	1055	1557	1758	-
900	300	800	1480	1984	2248	2560	-
1000	300	960	1824	2361	2736	2976	-

^{*} Building length 260 mm

Warning: Deviations (+/- 25 %) in the stiffness rates may occur due to use of different materials and manufacturing processes.

Angular stiffness torque

DN	Overall length	_	S	tiffness torque (avera	ages value from full way	y)	
	BL mm	0 bar Nm/°	2,5 bar Nm/°	4 bar Nm/°	6 bar Nm/°	10 bar Nm/°	16 bar Nm/°
20	130	0.2	0.5	0.9	1.3	1.7	1.9
25	130	0.2	0.5	0.9	1.3	1.7	1.9
32	130	0.2	0.5	0.9	1.3	1.7	1.9
40	130	0.3	0.6	1.1	1.6	2.0	2.3
50	130	0.3	0.6	1.1	1.6	2.0	2.2
65	130	0.4	0.9	1.7	2.5	3.2	3.6
80	130	1.0	1.0	2.0	3.0	4.0	5.0
100	130	1.0	2.0	4.0	7.0	9.0	10.0
125	130	2.0	3.0	6.0	10.0	13.0	15.0
150	130	3.0	7.0	12.0	19.0	25.0	28.0
200	130	11.0	20.0	41.0	63.0	82.0	91.0
250	130	18.0	35.0	65.0	102.0	130.0	144.0
300	130	29.0	58.0	105.0	154.0	206.0	229.0
350	200	34.0	57.0	113.0	183.0	244.0	270.0
400	200	65.0	110.0	218.0	226.0	460.0	511.0
450	250	87.0	168.0	304.0	473.0	609.0	676.0
500	200	125.0	239.0	436.0	674.0	868.0	963.0
600	200	186.0	261.0	618.0	1004.0	1288.0	1429.0
700	*250	167.0	237.0	861.0	853.0	1140.0	-
800	250	277.0	416.0	914.0	1501.0	1937.0	-
900	300	386.0	733.0	1330.0	2082.0	2689.0	-
1000	300	531.0	991.0	1751.0	2945.0	3700.0	-

^{*} Building length 260 m

Warning: Deviations (+/- 25~%) in the stiffness torque may occur due to use of different materials and manufacturing processes.

Frictional force

DN	Overall length BL mm	For designs E and M Frictional force N/bar	for design F frictional moment Nm/bar
20	130	7	0.2
25	130	7	0.2
32	130	7	0.2
40	130	7	0.2
50	130	12	0.3
65	130	20	0.5
80	130	35	1.0
100	130	51	1.4
125	130	75	2.1
150	130	118	4.4
200	130	167	6.2
250	130	243	11.2
300	130	335	15.4
350	200	120	17.0
400	200	160	22.9
450	250	171	40.5
500	200	266	63.5
600	200	634	138.5
700	*250	662	180.9
800	250	896	326.2
900	250	1105	402.4
1000	250	1357	617.3

* Building length 260 m

Warning: Deviations (+/- 25 %) in the frictional force may occur due to use of different materials and manufacturing processes.

WILLBRANDT Chemical Expansion Joint Type 50 PTFE

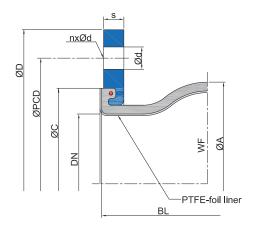
DN 25 - DN 500

Type 50 PTFE is a low-corrugated, PTFE-lined rubber expansion joint. Its low corrugation helps to achieve very low flow resistance. The PTFE lining gives the expansion joint high chemical resistance or an anti-adhesive property.

The PTFE lining can be used for any rubber compound on Type 50. It is however necessary to ensure that the selected rubber compound achieves the highest possible media resistance, as this is the only way to achieve optimum service life.

Dimensions for Design A

DN	Length	Ве	ellow			Flange	PN 10				Movement	absorption		Weight
	BL	ØA	WF*	ØD	ØPCD	Ød	n	s	ØС	axial +	axial	lateral ±	angular ±	
	mm	mm	mm²	mm	mm	mm		mm	mm	mm	mm	mm	∠°	kg
25	130	81	1700	115	85	14	4	14	66	15	15	15	15.0	1.9
32	130	81	1700	140	100	18	4	15	66	15	15	15	15.0	3.1
40	130	86	1800	150	110	18	4	15	74	15	15	15	15.0	3.5
50	130	96	3200	165	125	18	4	16	86	15	15	15	15.0	3.8
65	130	111	5300	185	145	18	8	16	106	15	15	15	15.0	5.4
80	130	122	8500	200	160	18	8	18	118	15	15	15	15.0	6.9
100	130	142	12800	220	180	18	8	18	138	15	15	15	10.0	8.0
125	130	168	18700	250	210	18	8	18	166	15	15	15	10.0	9.7
150	130	192	25900	285	240	22	8	20	192	15	15	15	10.0	13.1
200	130	252	41000	340	295	22	8	20	252	15	15	15	6.0	16.4
250	130	302	59600	395	350	22	12	20	304	15	15	15	6.0	21.7
300	130	354	82200	445	400	22	12	20	354	15	15	15	6.0	24.8
350	200	420	117600	505	460	22	16	24	412	15	15	15	4.0	38.8
400	200	480	154700	565	515	26	16	25	470	15	15	15	4.0	38.6
450	200	530	204200	615	565	26	20	28	520	15	15	15	4.0	49.3
500	200	580	227900	670	620	26	20	30	570	15	15	15	4.0	57.2


^{*} WF = effective area

Permissible degree of utilisation for movement areas:

- up to 50 °C: Utilisation ~ 100 % - up to 70 °C: Utilisation ~ 75 %

- up to 70 °C: Utilisation ~ 75 % - up to 90 °C: Utilisation ~ 60 %

Pressure resistance	Max. 6 bar operating pressure with polyamide cord reinforcement, max. 9 bar operating pressure with aramid or steel cord reinforcement.
Conformity	FDA and EG 1935/2004
Vacuum resistance	Only limited suitable for vacuum operation. A PTFE vacuum supporting ring, which allows full vacuum for small nominal diameters, can be used from DN 50. The PTFE supporting ring can only be used up to 50 °C. DN 25, DN 32, DN 40 and DN 350 expansion joints are not suitable for vacuum operation.

Important information

DN 32 - DN 600

Type 51 is a low-corrugated rubber expansion joint. Its low corrugation helps to achieve very low flow resistance. It reduces up to 70 % incoming energy. It is also characterised by its high level of pressure resistance. Type 51 is produced in four rubber qualities, which means that a suitable rubber compound is available for almost every application (see material descriptions on the following pages).

Type 51 is primarily used in industrial plants to absorb expansion, vibration and to insulate sound.

Bellow design Low-corrugated rubber bellow with reinforcement and shaped sealing bead with

core ring, self-sealing (no additional seals required). Suitable for swiveling flanges.

Flange version

Both sides with swiveling flange made of galvanized steel with clearance holes, drilled according to DIN PN 10 (standard). Other materials and dimensions are possible.

Vacuum resistance

- DN 32 to 50 vacuum-resistant without additional accessories
- DN 65 to 250 up to -200 mbar without additional accessories
- DN 300 to 1000 not vacuumresistant without additional accessories
- DN 65 to 1000 vacuum-resistant with vacuum supporting spiral/ring

Accessories

- Guide sleeves
- Potential equalisation
- Flame-resistant protective covers
- Dust and splash protection covers
- Earth cover / sun protection hoods
- Segment tie rods

Specifications for DN 32 - DN 600

Bellov	v		Bellow design	Permissible operating data							
Colour code	Colour marking	Core (inner)	Reinforcement	Cover (outer)							Short-term
	_				°C	bar	°C	bar	°C	bar	°C
red-blue		IIR-D	Aramid	EPDM	80	25	120	16	130	10	140
green-blue		CSM	Aramid	CSM	50	25	90	16	120	10	130
lilac		FPM	Aramid	ECO	50	25	120	16	150	4	160
yellow-blue		NBR	Aramid	CR	50	25	90	16	120	10	130

Bursting pressure: 75 bar

Application

Type 51 red-blue

For hot water, sea water, cooling water with chemical additives for treating water, saline solutions, weak acids and weak alkali solutions. Not suitable for oil products or cooling water with additives containing oil, hot air or steam.

Type 51 green-blue

For chemicals, aggressive chemical wastewater and compressor air containing oil.

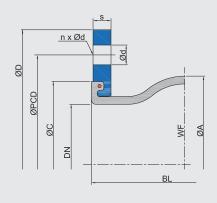
Type 51 lilac

For flue gas desulphurisation systems and bio-diesel. Good resistance to benzene, xylene, toluene, fuels with an aromatic content of more than 50 %, aromatic/chlorinated hydrocarbons and mineral acids. Not suitable for water or steam.

Type 51 yellow-blue

For oils, lubricants, fuels, gases, city and natural gas (not liquefied).

Note!


Detailed material descriptions on pages 5 - 7.

Design A - without tie rods

Can be used for movement absorption in any direction (for combined movements, see the movement diagram in the technical appendix), noise and vibration insulation.

The expansion joints reaction force must be absorbed via suitable piping.

Dimensions for Design A

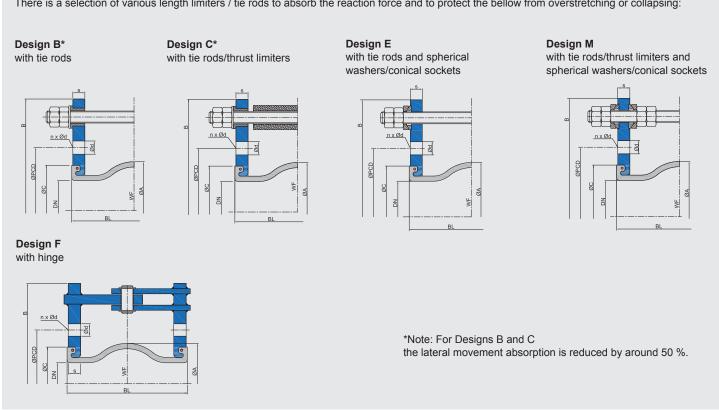
DN	Length	В	ellow			Flange	PN 10*2				Movement	absorption		Weight
	BL	ØA	WF*1	ØD	ØPCD	Ød	n	s	øс	axial +	axial -	lateral ±	angular ±	
	mm	mm	mm ²	mm	mm	mm		mm	mm	mm	mm	mm	∠°	kg
32	130	81	2700	140	100	18	4	15	79	10	20	15	20	3.2
40	130	86	2700	150	110	18	4	15	79	10	20	15	20	3.6
50	130	96	3200	165	125	18	4	15	88	10	20	15	20	3.8
65	130	110	5300	185	145	18	8	15	104	10	20	15	20	5.4
80	130	122	8500	200	160	18	8	15	119	15	20	15	20	7.0
100	130	142	12800	220	180	18	8	15	142	15	20	15	20	8.0
125	130	170	18700	250	210	18	8	18	169	15	20	15	20	9.7
150	130	196	25900	285	240	23	8	18	195	15	20	15	20	13.0
200	130	256	40900	340	295	23	8	20	244	15	20	15	15	16.6
250	130	306	59900	395	350	23	12	20	295	15	20	15	10	21.9
300	130	356	82200	445	400	23	12	22	351	15	20	15	10	25.2
350	200	442	117600	505	460	22	16	24	400	15	20	15	10	39.2
400	200	495	154700	565	515	26	16	25	450	20	25	20	8	38.8
450	250	545	227900	615	565	26	20	25	512	20	25	20	6	54.0
500	250	595	227900	670	620	26	20	30	563	20	25	20	6	57.3
600	250	695	311500	780	725	30	20	30	675	20	25	20	6	77.1

^{*1} WF = effective area

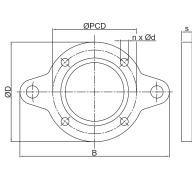
Permissible degree of utilisation for movement areas: - up to 50 °C: Utilisation \sim 100 % - up to 70 °C: Utilisation \sim 75 %

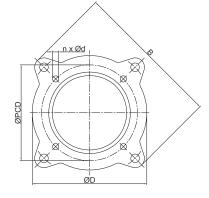
- up to 90 °C: Utilisation ~ 60 %

Important information

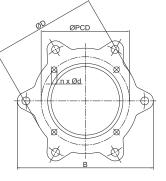

Please note the appropriate f xed point constructions and plain bearings in your piping system! For more information please refer to our installation instructions. For information on the tie rods, please see the technical appendix (p. 89 - 92)! ++++ We will be happy to send you further information on the individual types and designs. ++++

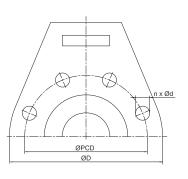
^{*2} Other standards/dimensions possible.


Length limiters


There is a selection of various length limiters / tie rods to absorb the reaction force and to protect the bellow from overstretching or collapsing:

Flange dimensions for designs with tie rods


DN	Length		Flange	PN 10 (exampl	e dimer	nsions)	- 1
	BL	В	ØD	ØPCD	Ød	n	s	øс
	mm	mm	mm	mm	mm		mm	mm
32	130	230	140	100	18	4	15	79
40	130	240	150	110	18	4	15	79
50	130	255	165	125	18	4	16	88
65	130	275	185	145	18	8	16	104
80	130	290	200	160	18	8	18	119
100	130	310	220	180	18	8	18	142
125	130	340	250	210	18	8	18	169
150	130	375	285	240	23	8	18	195
200	130	440	340	295	23	8	20	244
250	130	509	395	350	23	12	20	295
300	130	559	445	400	23	12	22	351
350	200	619	505	460	22	16	24	400
400	200	700	565	515	26	16	25	450
450	250	760	615	565	26	20	30	512
500	250	810	670	620	26	20	30	563
600	250	930	780	725	30	20	30	675



DN 32 - 200

DN 250 - 900

DN 1000

DN 50 - 1000 (Design F)

Axial stiffness rates

DN	Overall length			Stiffness rate	s (averages value	from full way)		
	BL mm	0 bar N/mm	2.5 bar N/mm	4 bar N/mm	6 bar N/mm	10 bar N/mm	16 bar N/mm	25 bar N/mm
50	130	47	97	187	256	330	430	558
65	130	61	134	252	379	480	624	811
80	130	82	170	305	434	543	706	918
100	130	95	191	315	559	743	966	1256
125	130	111	216	419	655	863	1122	1459
150	130	127	268	496	770	1024	1332	1731
200	130	148	267	541	842	1089	1416	1841
250	130	160	315	591	927	1185	1540	2002
300	130	182	367	663	974	1307	1699	2208
350	200	189	318	627	1018	1352	1757	2285
400	200	200	339	671	696	1417	1842	2395
450	250	217	416	755	1174	1511	1964	2553
500	250	255	489	892	1378	1773	2305	2997
600	250	270	380	900	1460	1873	2435	3166

Warning: Deviations (+/-25 %) in the stiffness rates may occur due to use of different materials and manufacturing processes.

Lateral stiffness rates

DN	Overall length			Stiffness rate	es (averages value	from full way)		
	BL mm	0 bar N/mm	2.5 bar N/mm	4 bar N/mm	6 bar N/mm	10 bar N/mm	16 bar N/mm	25 bar N/mm
50	130	65	85	104	137	189	245	319
65	130	52	101	150	195	215	279	363
80	130	46	96	177	202	225	292	380
100	130	72	114	186	218	250	324	422
125	130	130	260	339	381	498	647	841
150	130	156	338	402	476	606	788	1024
200	130	420	940	1087	1234	1585	2060	2678
250	130	492	1048	1329	1525	1923	2500	3249
300	130	510	1088	1388	1581	2005	2606	3388
350	200	397	793	991	1138	1427	1856	2412
400	200	439	835	1062	1230	1559	2026	2634
450	250	445	831	1067	1262	1560	2028	2636
500	250	554	1063	1362	1565	1944	2527	3285
600	250	593	1084	1381	1684	2062	2680	3484

Warning: Deviations (+/-25 %) in the stiffness rates may occur due to use of different materials and manufacturing processes.

Important information

Please note the appropriate f xed point constructions and plain bearings in your piping system! For more information please refer to our installation instructions.

For information on the tie rods, please see the technical appendix (p. 89 - 92)!

++++ We will be happy to send you further information on the individual types and designs. ++++

Angular stiffness torque

DN	Overall length			Stiffness torqu	ue (averages value	from full way)		
	BL mm	0 bar Nm/°	2.5 bar Nm/°	4 bar Nm/°	6 bar Nm/°	10 bar N/mm	16 bar Nm/°	25 bar Nm/°
50	130	1	1	2	3	4	5	6
65	130	1	2	4	6	7	9	12
80	130	2	4	6	9	11	15	19
100	130	3	6	10	17	23	30	38
125	130	5	10	19	30	39	51	66
150	130	8	17	31	48	63	83	107
200	130	16	29	59	92	119	154	201
250	130	26	51	96	151	193	251	327
300	130	42	84	152	224	300	390	507
350	200	60	101	200	325	432	561	729
400	200	85	143	283	294	599	778	1012
450	250	114	218	396	615	791	1029	1337
500	250	162	311	567	877	1128	1467	1907
600	250	242	339	804	1305	1674	2176	2829

Warning: Deviations (+/-25 %) in the stiffness torque may occur due to use of different materials and manufacturing processes.

Frictional force

DN	Overall length BL mm	for Designs E and M Frictional force N/bar	for Design F Frictional moment Nm/bar
32	130	7	0.3
40	130	7	0.3
50	130	12	0.3
65	130	20	0.5
80	130	35	1.0
100	130	51	1.4
125	130	75	2.1
150	130	118	4.4
200	130	167	6.2
250	130	243	11.2
300	130	335	15.4
350	200	120	17.0
400	200	160	22.9
450	250	226	40.5
500	250	266	63.5
600	250	634	138.5

Warning: Deviations (+/-25 %) in the frictional force may occur due to use of different materials and manufacturing processes.

Important information

Please note the appropriate f xed point constructions and plain bearings in your piping system! For more information please refer to our installation instructions.

For information on the tie rods, please see the technical appendix (p. 89 - 92)!

++++ We will be happy to send you further information on the individual types and designs. ++++

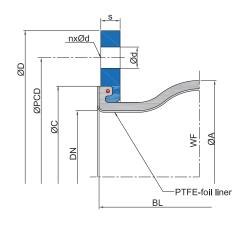
DN 32 - DN 300

Type 51 PTFE is a low-corrugated, PTFE-lined rubber expansion joint. Its low corrugation helps it to achieve very low flow resistance. The PTFE lining gives the expansion joint high chemical resistance or an anti-adhesive property.

The PTFE lining can be used for any rubber compound on Type 51. It is however necessary to ensure that the selected rubber compound achieves the highest possible media resistance, as this is the only way to achieve optimum service life.

Dimensions

DN	Length	В	ellow			Flange	PN 10*2			Movement absorption				
	BL	ØA	WF*1	ØD	ØPCD	Ød	n	s	ØС	axial +	axial -	lateral ±	angular ±	
	mm	mm	mm²	mm	mm	mm		mm	mm	mm	mm	mm	∠°	
32	130	81	2700	140	100	18	4	15	79	15	15	15	10	
40	130	86	2700	150	110	18	4	15	79	15	15	15	10	
50	130	96	3200	165	125	18	4	15	88	15	15	15	10	
65	130	110	5300	185	145	18	8	15	104	15	15	15	10	
80	130	122	8500	200	160	18	8	15	119	15	15	15	10	
100	130	142	12800	220	180	18	8	15	142	15	15	15	10	
125	130	170	18700	250	210	18	8	18	169	15	15	15	10	
150	130	196	25900	285	240	23	8	18	195	15	15	15	10	
200	130	256	40900	340	295	23	8	20	244	15	15	15	4	
250	130	306	59900	395	350	23	12	20	295	15	15	15	4	
300	130	356	82200	445	400	23	12	22	351	15	15	15	4	


^{*1} WF = effective area

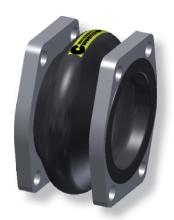
Permissible degree of utilisation for movement areas:

- up to 50 °C: Utilisation ~ 100 % - up to 70 °C: Utilisation ~ 75 %

- up to 90 °C: Utilisation ~ 60 %

Pressure resistance	Max. 9 bar operating pressure
Conformity	FDA and EG 1935/2004
Vacuum resistance	Only limited suitable for vacuum operation. A PTFE vacuum supporting ring, which allows full vacuum for small nominal diameters, can be used from DN 50. The PTFE supporting ring can only be used up to 50 °C. DN 32 and DN 40 expansion joints are not suitable for vacuum operation.

Important information


^{*2} Other standards/dimensions possible.

DN 25 - DN 100

Type 54 is a high-corrugated rubber expansion joint for hydraulic systems. In combination with flanges according to SAE 3000 it is characterised by its large opening and considerable movement absorption. It is only available in an oil-resistable rubber compund.

Type 54 is almost exclusively used in the hydraulics and oil industries to absorb expansion and vibration, and to insulate sound.

Bellow design	High-corrugated rubber bellow with rein- forcement and shaped sealing bead with core ring, self-sealing (no additional seals required). Suitable for accommodating	Flange version	Both sides with swiveling flange made of galvanized steel, with clearance holes (drilled according to SAE 3000).
	swiveling flanges.	Accessories	- Guide sleeves
Vacuum resistance	 - DN 25 to 40 up to -200 mbar without additional accessories - DN 50 to DN 100 vacuum-resistant with vacuum supporting spiral/ring - To reach higher vacuum for diameter DN 25 to DN 40, Type 50 yellow has to be used (installation length 130 mm) 		 Potential equalisation Flame-resistant protective covers Dust and splash protection covers Earth cover / sun protection hoods

Specifications

Bello	N		Bellow design		Permissible o	perating data
Colour code	Colour marking	Core (inner)	Reinforcement	Cover (outer)		
					°C	bar
yellow		NBR	Polyamide	CR	80	2

Application

Type 54 yellow NBR

Good resistance to heat and ageing, particularly in the absence of air (e.g. in oil). Excellent resistance to swelling (weak- and non-polar media, e.g. mineral oils, lubricating greases, animal and vegetable fats or oils). No resistance to esters, ketones, aromatic or chlorinated hydrocarbons or lead-free fuels.

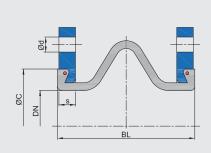
Note!

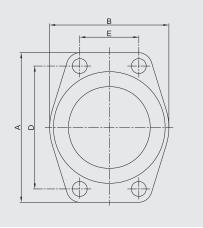
Detailed material descriptions on pages 5 - 7.

Important information

Use only flat head DIN 7984 hexagon head screws to screw the expansion joints into place. The bellows should not be painted or insulated.

Please refer to the installation instructions.


++++ We will be happy to send you further information on the individual types and designs. ++++



Design A - without tie rods

Can be used for movement absorption in any direction (for combined movements, see the movement diagram in the technical appendix), noise and vibration insulation.

The expansion joint's reaction force must be absorbed via suitable piping.

Dimensions for Design A

DN	Length	В	ellow		Flange SAE 3000							Movement	absorption		Weight
	BL	Ødi	ØС	Α	В	D	Е	Ød	n	s	axial +	axial -	lateral ±	angular ±	
	mm	mm	mm	mm	mm	mm	mm	mm		mm	mm	mm	mm	∠°	kg
25	65	25	43	70	59	52.4	26.2	11	4	11	5	5	5	7.5	0.4
32	65	32	50	81	73	58.7	30.2	13	4	11	5	5	5	7.5	0.5
40	100	40	62	95	83	70.0	35.7	13	4	13	10	10	10	10.0	0.8
50	100	48	72	103	97	77.8	42.9	13	4	13	10	10	10	10.0	1.0
65	100	63	87	115	109	89.0	50.8	13	4	14	10	10	10	10.0	1.2
80	100	80	104	136	131	106.4	62.0	17	4	14	10	10	10	10.0	1.8
90	100	80	104	152	140	120.6	70.0	17	4	14	10	10	10	10.0	1.9
100	100	100	130	162	152	130.2	77.8	17	4	16	10	10	10	10.0	2.5

Important information

Use only flat head DIN 7984 hexagon head screws to screw the expansion joints into place. Please note the appropriate f xed point constructions and plain bearings in your piping system! You can f nd information on this in our installation instructions. For information on the tie rods, please see the technical appendix (p. 89 - 92)! ++++ We will be happy to send you further information on the individual types and designs. ++++



DN 20 - DN 1000

Type 55 is a low-corrugated, highly elastic rubber expansion joint. Its low corrugation helps to achieve very low flow resistance. It reduces up to 70 % of the incoming energy. It is also characterised by very high movement absorption in all directions and its variety of rubber qualities, which means that a suitable rubber compound is available for almost every application (see material descriptions on the following pages).

Type 55 is used in building technology, plant engineering, water and wastewater technology, engine construction, shipbuilding and in solar and wind plant engineering. It is especially used to absorb expansion and vibration and to insulate sound.

Bellow design Low-corrugated rubber bellow with rein-

forcement and shaped sealing bead with core ring, self-sealing (no additional seals required). Suitable for accommodating

swiveling flanges.

Approvals/Conformity Similar to DIN 4809 / TÜV approved,

drinking water, shipbuilding approval FDA and EG 1935/2004 conform

Flange version

Both sides with swiveling flange made of galvanized steel, with clearance holes, drilled according to DIN PN 10 (standard). Other materials and dimensions are possible.

Specifications for DN 20 - DN 400

Bellov	v	E	Bellow design			Permissible operating data									Surface resistance Ro		
Colour- code	Colour marking	Core (inner)	Rein- forcement	Cover (outer)									Short- term	Core	Cover		
					°C	bar	°C	bar	°C	bar	°C	bar	°C	Ohm x cm	Ohm x cm		
red Sp		EPDM	PEEK	EPDM	-40	10	70	16	100	10	130	8	150	4 x 10 ³	4 x 10 ³		
red		IIR	Polyamide	EPDM	-40	10	50	16	70	12	100	10	120	7 x 10 ⁶	1 x 10 ³		
yellow		NBR	Polyamide	CR	-20	10	50	16	70	12	90	10	100	2 x 10 ²	1 x 10 ³		
green		CSM	Polyamide	CSM	-20	10	50	16	70	12	100	10	110	7 x 10 ⁹	7 x 10 ⁹		
yellow St		NBR	Steel cord	CR	-20	10	60	16	70	12	90	10	100	2 x 10 ²	5 x 10 ¹⁰		
1																	

⁻ Bursting pressure for DN 20 - 400: > 48 bar

Specifications for DN 450 - DN 1000

Bellov	v		Bellow design		Permissible operating data									Surface resistance Ro		
Colour- code	Colour marking	Core (inner)	Rein- forcement	Cover (outer)									Short- term	Core	Cover	
		, ,		, ,	°C	bar	°C	bar	°C	bar	°C	bar	°C	Ohm x cm	Ohm x cm	
red Sp		EPDM	PEEK	EPDM	-40	8	70	10	100	7.5	130	6	150	4 x 10 ³	4 x 10 ³	
red		IIR	Polyamide	EPDM	-40	8	50	10	70	8.0	100	6	120	7 x 10 ⁶	1 x 10 ³	
yellow		NBR	Polyamide	CR	-20	8	50	10	70	8.0	90	6	100	2 x 10 ²	1 x 10 ³	
green		CSM	Polyamide	CSM	-20	8	50	10	70	8.0	100	6	110	7 x 10 ⁹	7 x 10 ⁹	

⁻ Bursting pressure for DN 450 - 1000: > 30 bar

Important information

⁻ DN 300 max. 10 bar working pressure / Bursting pressure >30 bar

⁻ The inner core of type 55 red DN 500 and DN 600 is made of EPDM

Vacuum resistance

- DN 20 to 50 vacuum-resistant without additional accessories
- DN 65 to 250 up to -200 mbar without additional accessories
- DN 300 to 1000 not vacuumresistant without additional accessories
- DN 65 to 1000 vacuum-resistant with vacuum supporting spiral/ring

Accessories

- Guide sleeves
- Potential equalisation
- Flame-resistant protective covers
- Dust and splash protection covers
- Earth cover / sun protection hoods
- Segment tie rods

Application

Type 55 red Sp

For heating installations according to DIN 4809. For many years of operation under constant loading with hot water and heating water at 100 °C/110 °C at 10 bar/6 bar operating pressure. Electrically conductive surface. Not suitable for media with additives containing oil.

Type 55 red

For drinking water, hot water, sea water, cooling water with chemical additives for treating water, saline solutions, weak acids and weak alkaline solutions. Electrically dissipative inner surface and electrically conductive outer surface. Not suitable for oil products or cooling water with additives containing oil.

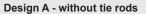
Type 55 yellow

For oils, lubricants, fuels, gases, city and natural gas (not liquefied) and DIN EN fuels with an aromatic content up to 50 %. Electrically conductive.

Type 55 green

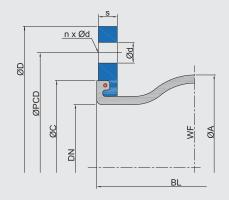
For chemicals, aggressive chemical wastewater and compressor air containing oil. Electrically insulating.

Type 55 yellow St


Like Type 50 yellow with additional flame-resistance for up to 30 minutes at 800 °C. Electrically conductive inner surface, electrically insulating outer surface.

Note!

Detailed material descriptions on pages 5 - 7.



Can be used for movement absorption in any direction (for combined movements, see the movement diagram in the technical appendix), noise and vibration insulation.

The expansion joint's reaction force must be absorbed via suitable piping.

Dimensions for Design A

DN	Length	Ве	ellow			Flange	PN 10*2				Movement	absorption		Weight
	BL	ØA	WF *1	ØD	ØPCD	Ød	n	s	ØC	axial +	axial -	lateral ±	angular ±	
	mm	mm	mm ²	mm	mm	mm		mm	mm	mm	mm	mm	∠°	kg
20	*3125	81	1700	105	75	12	4	14	66	30	30	30	30	1.5
25	*3125	81	1700	115	85	14	4	14	66	30	30	30	30	1.9
32	*3125	81	1700	140	100	18	4	15	66	30	30	30	30	3.1
40	*3125	86	1800	150	110	18	4	15	74	30	30	30	30	3.5
50	*3125	96	3200	165	125	18	4	16	86	30	30	30	30	3.7
65	*3125	111	5300	185	145	18	8	16	106	30	30	30	30	5.3
80	150	122	8500	200	160	18	8	18	118	30	30	30	30	6.9
100	150	142	12800	220	180	18	8	18	138	30	30	30	20	8.0
125	150	168	18700	250	210	18	8	18	166	30	30	30	20	9.8
150	150	192	25900	285	240	22	8	18	192	30	30	30	20	13.2
200	175	252	41000	340	295	22	8	20	252	30	30	30	12	17.9
250	175	302	59600	395	350	22	12	20	304	30	30	30	12	23.8
300	200	354	82200	445	400	22	12	22	354	30	30	30	12	25.0
350	200	420	117600	505	460	22	16	24	412	30	50	30	8	38.3
400	200	480	154700	565	515	26	16	25	470	30	50	30	8	38.0
450	250	530	204200	615	565	26	20	25	520	30	50	30	8	53.7
500	250	580	227900	670	620	26	20	30	570	20	40	30	6	61.0
600	250	680	311500	780	725	30	20	30	675	20	40	30	6	79.3
700	*4275	800	434200	895	840	30	24	35	780	30	50	30	8	127.3
800	250	880	527400	1015	950	33	24	40	887	30	50	30	6	161.0
900	300	1038	737900	1115	1050	33	28	40	987	30	50	30	5	196.7
1000	300	1138	889400	1230	1160	36	28	40	1087	30	50	30	5	234.5

^{*1} WF = effective area

Important information

Please note the appropriate f xed point constructions and plain bearings in your piping system! You can f nd information on this in our installation instructions. For information on the tie rods, please see the technical appendix (p. 89 - 92)! ++++ We will be happy to send you further information on the individual types and designs. ++++

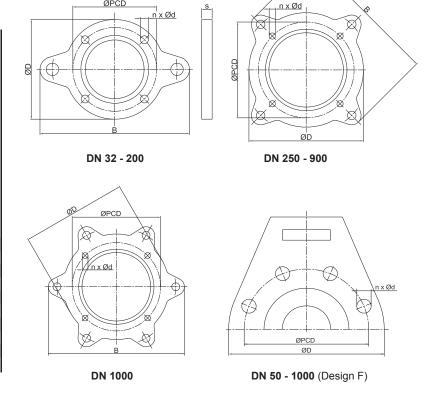
^{*2} Other standards/dimensions possible.

^{*3} Building length 130 mm

^{*4} Building length 260 mm

Permissible degree of utilisation for movement areas:

⁻ up to 50 °C: Utilisation \sim 100 % - up to 70 °C: Utilisation \sim 75 % - up to 90 °C: Utilisation \sim 60 %


Length limiters

There is a selection of various length limiters / tie rods to absorb the reaction force and to protect the bellow from overstretching or collapsing:

Design C* Design E Design M Design B* with tie rod/thrust limiters with tie rods and spherical with tie rods/thrust limiters with with tie rods washers/conical sockets spherical washers/conical sockets Design F with hinge *Note: For Designs B and C the lateral movement absorption is reduced by around 50 %.

Flange dimensions for designs with tie rods

DN	Length	Flange PN 10 (example dimensions)								
	BL	В	ØD	ØPCD	Ød	n	s	ØС		
	mm	mm	mm	mm	mm		mm	mm		
20	*1125	189	105	75	12	4	14	66		
25	*1125	205	115	85	14	4	14	66		
32	*1125	230	140	100	18	4	15	66		
40	*1125	240	150	110	18	4	15	74		
50	*1125	255	165	125	18	4	16	86		
65	*1125	275	185	145	18	8	16	106		
80	150	290	200	160	18	8	18	118		
100	150	310	220	180	18	8	18	138		
125	150	340	250	210	18	8	18	166		
150	150	375	285	240	22	8	18	192		
200	175	440	340	295	22	8	20	252		
250	175	509	395	350	22	12	20	304		
300	200	559	445	400	22	12	22	354		
350	200	619	505	460	22	16	24	412		
400	200	700	565	515	26	16	25	470		
450	250	760	615	565	26	20	30	520		
500	250	810	670	620	26	20	30	570		
600	250	930	780	725	30	20	30	675		
700	*2 275	1045	895	840	30	24	35	780		
800	250	1175	1015	950	33	24	40	887		
900	300	1285	1115	1050	33	28	40	987		
1000	300	1400	1230	1160	36	28	40	1087		

^{*1} Building length 130 mm

^{*2} Building length 260 mm

Axial stiffness rates

DN	Length		Stiffness rates (average value from full way)									
	BL mm	0 bar N/mm	1 bar N/mm	2.5 bar N/mm	3 bar N/mm	4 bar N/mm	5 bar N/mm	6 bar N/mm	8 bar N/mm	10 bar N/mm	12 bar N/mm	16 bar N/mm
20	*1125	31	56	68	88	128	160	192	192	243	252	270
25	*1125	31	56	68	88	128	160	192	192	243	252	270
32	*1125	31	56	68	88	128	160	192	192	243	252	270
40	*1125	30	54	66	85	124	155	186	186	236	244	261
50	*1125	25	42	51	67	98	116	134	134	173	179	192
65	*1125	24	43	53	69	100	125	150	150	190	197	211
80	150	28	48	58	73	104	126	148	148	185	192	205
100	150	35	59	71	86	116	161	206	206	274	284	304
125	150	36	59	71	93	137	176	214	214	282	292	313
150	150	49	84	102	131	189	241	293	293	390	404	433
200	175	100	153	180	242	365	467	568	568	735	762	816
250	175	105	173	207	267	388	499	609	609	778	807	864
300	200	123	206	248	315	448	553	658	659	883	915	980
350	200	105	153	177	234	349	458	567	567	753	781	836
400	200	154	225	261	346	516	526	535	536	1,090	1,130	1,210
450	250	167	269	320	407	581	742	903	904	1,162	1,205	1,290
500	250	196	316	376	479	686	873	1,060	1,061	1,364	1,414	1,514
600	250	208	264	292	425	692	908	1,123	1,124	1,441	1,494	1,600
700	*2 275	140	179	198	372	721	718	714	715	954	636	-
800	250	180	240	270	378	594	785	975	976	1,258	839	-
900	300	200	320	380	483	690	885	1,080	1,081	1,395	930	-
1000	300	225	355	420	527	742	995	1,248	1,249	1,568	1,045	-

^{*1} Building length 130 mm *2 Building length 260 mm

Warning: Deviations (+/-25 %) in the stiffness rates may occur due to use of different materials and manufacturing processes.

Lateral stiffness rates

DN	Length		Stiffness rates (average value from full way)										
	BL	0 bar	1 bar	2.5 bar	3 bar	4 bar	5 bar	6 bar	8 bar	10 bar	12 bar	16 bar	
	mm	N/mm	N/mm	N/mm	N/mm	N/mm	N/mm	N/mm	N/mm	N/mm	N/mm	N/mm	
20	*1125	64	105	125	145	184	212	240	249	259	260	264	
25	*1125	64	105	125	145	184	212	240	249	259	260	264	
32	*1125	64	105	125	145	184	212	240	249	259	260	264	
40	*1125	62	101	121	140	178	205	233	242	251	252	256	
50	*1125	50	60	65	70	80	93	105	124	142	143	145	
65	*1125	40	65	78	90	115	133	150	156	162	163	165	
80	150	34	59	72	92	132	141	151	158	165	166	168	
100	150	53	74	85	102	138	150	162	172	181	183	185	
125	150	97	162	194	214	253	269	284	324	364	367	372	
150	150	116	206	251	267	299	326	354	398	441	444	450	
200	175	304	555	680	716	787	840	893	1,009	1,124	1,132	1,147	
250	175	356	624	758	826	961	1,032	1,103	1,233	1,363	1,373	1,391	
300	200	368	647	786	858	1,003	1,072	1,142	1,280	1,419	1,428	1,448	
350	200	305	508	610	661	762	819	875	976	1,076	1,083	1,098	
400	200	338	541	642	700	817	882	946	1,061	1,175	1,183	1,199	
450	250	342	540	639	700	821	896	971	1,074	1,176	1,184	1,200	
500	250	426	687	818	895	1,048	1,126	1,204	1,335	1,465	1,475	1,495	
600	250	456	708	834	910	1,062	1,179	1,295	1,425	1,554	1,565	1,586	
700	*2275	516	798	939	1,023	1,191	1,320	1,449	1,594	1,740	1,160	-	
800	250	558	826	960	992	1,055	1,306	1,557	1,640	1,723	1,149	-	
900	300	800	1,253	1,480	1,648	1,984	2,116	2,248	2,378	2,509	1,673	-	
1000	300	960	1,536	1,824	2,003	2,361	2,549	2,736	2,826	2,916	1,944	-	

^{*1} Building length 130 mm *2 Building length 260 mm

Warning: Deviations (+/-25 %) in the stiffness rates may occur due to use of different materials and manufacturing processes.

Angular stiffness torque

DN	Overall length		S	stiffness torque (aver	age value from full way	<i>(</i>)	
	BL mm	0 bar Nm/°	2.5 bar Nm/°	4 bar Nm/°	6 bar Nm/°	10 bar Nm/°	16 bar Nm/°
20	*1125	0.2	0.5	0.9	1.3	1.7	1.9
25	*1125	0.2	0.5	0.9	1.3	1.7	1.9
32	*1125	0.2	0.5	0.9	1.3	1.7	1.9
40	*1125	0.3	0.6	1.1	1.6	2.0	2.3
50	*1125	0.3	0.6	1.1	1.6	2.0	2.2
65	*1125	0.4	0.9	1.7	2.5	3.2	3.6
80	150	0.6	1.3	2.3	3.3	4.1	4.6
100	150	1.0	2.0	4.0	7.0	9.0	10.0
125	150	2.0	3.0	6.0	10.0	13.0	15.0
150	150	3.0	7.0	12.0	19.0	25.0	28.0
200	175	11.0	20.0	41.0	63.0	82.0	91.0
250	175	18.0	35.0	65.0	102.0	130.0	144.0
300	200	29.0	58.0	105.0	154.0	206.0	229.0
350	200	34.0	57.0	113.0	183.0	244.0	270.0
400	200	65.0	110.0	218.0	226.0	460.0	511.0
450	250	114.0	218.0	396.0	615.0	792.0	676.0
500	250	162.0	311.0	568.0	877.0	1128.0	1069.0
600	250	241.0	340.0	804.0	1305.0	1674.0	1588.0
700	*2 275	167.0	237.0	861.0	853.0	1140.0	1265.0
800	250	277.0	416.0	914.0	1501.0	1937.0	2150.0
900	300	386.0	733.0	1330.0	2082.0	2689.0	2985.0
1000	300	531.0	991.0	1751.0	2945.0	3700.0	4107.0

Warning: Deviations (+/-25 %) in the stiffness torque may occur due to use of different materials and manufacturing processes.

Frictional force

DN	Overall length	for Designs E and M Frictional force N/bar	for Design F Frictional moment Nm/bar
20	*1125	7	0.2
25	*1125	7	0.2
32	*1125	7	0.2
40	*1125	8	0.2
50	*1125	12	0.3
65	*1125	20	0.5
80	150	30	1.0
100	150	44	1.4
125	150	65	2.1
150	150	102	4.4
200	175	124	6.2
250	175	180	11.2
300	200	218	15.4
350	200	120	17.0
400	200	160	22.9
450	250	226	40.5
500	250	212	63.5
600	250	507	138.5
700	*2 275	602	180.9
800	250	814	326.2
900	300	921	402.4
1000	300	1130	617.3

^{*1} Building length 130 mm *2 Building length 260 mm

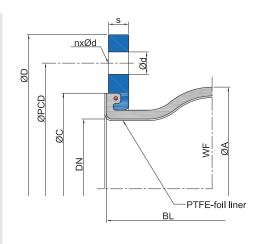
Warning: Deviations (+/-25 %) in the frictional force may occur due to use of different materials and manufacturing processes.

^{*1} Building length 130 mm *2 Building length 260 mm

DN 25 - DN 500

Type 55 PTFE is a low-corrugated, PTFE-lined rubber expansion joint. Its shallow corrugation helps to achieve very low flow resistance. The PTFE lining gives the expansion joint high chemical resistance or an anti-adhesive property.

The PTFE lining can be used for any rubber compound on Type 55. It is however necessary to ensure that the selected rubber compound achieves the highest possible media resistance, as this is the only way to achieve optimum service life.


Dimensions for Design A

DN	Overall	В	ellow			Flange	PN 10*2			Movement absorption					
	length BL	ØA	WF *1	ØD	ØPCD	Ød	n	s	ØС	axial +	axial -	lateral ±	angular ±		
	mm	mm	mm²	mm	mm	mm		mm	mm	mm	mm	mm			
25	*3125	81	1700	115	85	14	4	14	65	15	15	15	15.0		
32	*3125	81	1700	140	100	18	4	15	65	15	15	15	15.0		
40	*3 125	86	1800	150	110	18	4	15	74	15	15	15	15.0		
50	*3125	96	3200	165	125	18	4	16	86	15	15	15	15.0		
65	*3125	111	5300	185	145	18	8	16	105	15	15	15	15.0		
80	150	122	8500	200	160	18	8	18	118	15	15	15	15.0		
100	150	142	12800	220	180	18	8	18	137	15	15	15	10.0		
125	150	168	18700	250	210	18	8	18	166	15	15	15	10.0		
150	150	192	25900	285	240	22	8	20	192	15	15	15	10.0		
200	175	252	41000	340	295	22	8	20	252	15	15	15	6.0		
250	175	302	59600	395	350	22	12	20	304	15	15	15	6.0		
300	200	354	82200	445	400	22	12	20	354	15	15	15	6.0		
350	200	420	117600	505	460	22	16	24	412	15	15	15	4.0		
400	200	480	154700	565	515	26	16	25	470	15	15	15	4.0		
450	250	530	204200	615	565	26	20	25	520	15	15	15	4.0		
500	250	580	227900	670	620	26	20	30	570	15	15	15	4.0		

^{*1} WF = Building length 130 mm

Permissible degree of utilisation for movement areas:

Pressure resistance	Max. 6 bar operating pressure with polyamide cord reinforcement, max. 9 bar operating pressure with aramid or steel cord reinforcement.
Conformity	FDA and EG 1935/2004
Vacuum resistance	Only limited suitable for vacuum operation. A PTFE vacuum supporting ring, which allows full vacuum for small nominal diameters, can be used from DN 50. The PTFE supporting ring can only be used up to 50 °C. DN 25, DN 32, DN 40 and DN 350 expansion joints are not suitable for vacuum operation.

Important information

^{*2} WF = effective area

^{*3} Other standards/dimensions possible.

<sup>up to 50 °C: Utilisation ~ 100 %
up to 70 °C: Utilisation ~ 75 %</sup>

⁻ up to 90 °C: Utilisation ~ 60 %

WILLBRANDT Rubber Expansion Joint for Shock Design Type 55 SO

DN 20 - DN 300

Type 55 SO is a low-corrugated, highly elastic rubber expansion joint. Its low corrugation helps to achieve very low flow resistance. It has been specially designed for the shipbuilding industry and is characterised by its high level of shock absorption.

Type 55 SO is primarily used in marine shipbuilding to absorb expansion and vibration as well as to insulate sound and protect the connected fans in the event of shock.

Bellow design	Low-corrugated rubber bellow with reinforcement and shaped sealing bead with core ring, self-sealing (no additional seals required). Suitable for accommodating swiveling flanges.	Flange version	Both sides with swiveling flange made of galvanized steel, with clearance holes, drilled according to DIN PN 10 (standard). Other materials and dimensions are possible.
Vacuum resistance	- DN 20 to 50 vacuum-resistant without additional accessories	Approvals	Drinking water and shipbuilding approval
	 - DN 65 to 250 up to -200 mbar without additional accessories - DN 300 to 1000 not vacuum-resistant without additional accessories - DN 65 to 1000 with vacuum supporting spiral/ring vacuum-resistant 	Accessories	 Guide sleeves Potential equalisation Flame-resistant protective covers Dust and splash protection covers Earth cover / sun protection hoods Segment tie rods

Specifications for DN 20 - DN 300

Bellov	v		Bellow design		Permissible operating data								Surface resistance Ro		
Colour code	Colour marking	Core (inner)	Rein- forcement	Cover (outer)									Short- term	Core	Cover
					°C	bar	°C	bar	°C	bar	°C	bar	°C	Ohm x cm	Ohm x cm
red		IIR	Polyamide	EPDM	-40	10	50	16	70	12	100	10	120	7 x 10 ⁶	1 x 10 ³
yellow		NBR	Polyamide	CR	-20	10	50	16	70	12	90	10	100	2 x 10 ²	1 x 10 ³

⁻ Bursting pressure for DN 20 - DN 300: > 48 bar

Use

Type 55 SO red

For drinking water, hot water, sea water, cooling water with chemical additives for treating water, saline solutions, weak acids and weak alkaline solutions. Electrically dissipative inner surface and electrically conductive outer surface. Not suitable for oil products or cooling water with additives containing oil.

Type 55 SO yellow

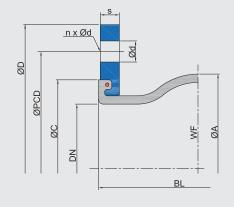
For oils, lubricants, fuels, gases, city and natural gas (not liquefied) and DIN EN fuels with an aromatic content up to 50 %. Electrically conductive.

Note!

Detailed material descriptions on pages 5 - 7.

Important information

⁻ DN 250 and DN 300 max. 10 bar working pressure



WILLBRANDT Rubber Expansion Joint for Shock Design Type 55 SO

Design A - without tie rods

Can be used for movement absorption in any direction (for combined movements, see the movement diagram in the technical appendix), noise and vibration insulation.

The expansion joints reaction force must be absorbed via suitable piping.

Dimensions

DN	Length	В	ellow			Flange	PN 10*2				Weight			
	BL	ØA	WF *1	ØD	ØPCD	Ød	n	s	ØС	axial +	axial -	lateral ±	angular ±	
	mm	mm	mm ²	mm	mm	mm		mm	mm	mm	mm	mm	∠°	kg
20	160	81	1700	105	75	12	4	14	66	30	30	30	30	1.5
25	160	81	1700	115	85	14	4	14	66	30	30	30	30	1.9
32	160	81	1700	140	100	18	4	15	66	30	30	30	30	3.1
40	160	86	1800	150	110	18	4	15	74	30	30	30	30	3.5
50	160	96	3200	165	125	18	4	16	86	30	30	30	30	3.7
65	160	111	5300	185	145	18	8	16	106	30	30	30	30	5.3
80	160	122	8500	200	160	18	8	18	118	30	30	30	30	6.8
100	160	142	12800	220	180	18	8	18	138	30	30	30	20	7.9
125	160	168	18700	250	210	18	8	18	166	30	30	30	20	9.6
150	160	192	25900	285	240	22	8	18	192	30	30	30	20	12.9
200	160	252	41000	340	295	22	8	20	252	30	30	30	12	16.2
250	200	302	59600	395	350	22	12	20	304	30	30	30	12	21.5
300	200	354	82200	445	400	22	12	22	354	30	30	30	12	24.5

^{*1} WF = effective area

Shock absorption in any direction ±50 mm.

Permissible degree of utilisation for movement areas:

up to 50 °C: Utilisation ~ 100 % up to 70 °C: Utilisation ~ 75 %

up to 90 °C: Utilisation ~ 60 %

Important information

Please note the appropriate f xed point constructions and plain bearings in your piping system! For more information please refer to our installation instructions.

For information on the tie rods, please see the technical appendix (p. 89 - 92)!

We will be happy to send you further information on the individual types and designs. ++++

^{*2} Other standards/dimensions possible.

DN 50 - DN 1000

Dallani daalaa

Type 56 is a cylindrical rubber expansion joint that achieves very low flow resistance because of its uncorrugated bellow geometry. It is suitable for conveying media that contain solids, even at high flow rates. It is also characterised by its flexible installation length and variety of rubber qualities, which means that a suitable rubber compound is available for every application (see material descriptions on the following pages). Depending on its design, it may only be able to absorb minimal axial movement!

Type 56 is used in plant engineering, water technology and wastewater technology absorb lateral movement and vibration and to insulate sound.

Dust and splash protection coversEarth cover/sun protection hoods

- Segment tie rods

Bellow design	forcement and shaped sealing bead with core ring, self-sealing (no additional seals required). Suitable for accommodating swiveling flanges.	vacuum resistance	tion lengths, longer versions should be fitted with a vulcanized vacuum supporting spiral.
Flange version	Both sides with swiveling flange made of galvanized steel, with clearance holes,	Approvals/Conformity	Drinking water approval, FDA and EG 1935/2004 conform
	drilled according to DIN PN 10 (standard). Other materials and dimensions are possible.	Accessories	- Potential equalisation - Flame-resistant protective covers

Smooth autinorised rubber hellow with rain Vacuum registance

Specifications

Bellow			Permissible operating data												
Colour code	Colour marking	Core (inner)	Reinforce- ment	Cover (outer)	Max. temperature °C	°C	bar	°C	bar	°C	bar	°C	bar	°C	bar
red		EPDM	Polyamide	EPDM	100										
blue		EPDM TW	Polyamide	EPDM	100										
white/red		EPDM beige	Polyamide	EPDM	100										
red		EPDM AF	Polyamide	EPDM	100										
green		CSM	Polyamide	CSM	100										
yellow-grey		NBR	Polyamide	CR	100										
white-grey		NBR beige	Polyamide	CR	100										
grey		CR	Polyamide	CR	90										
red-blue-red		EPDM	Aramid	EPDM	100		_								
blue-blue-blue		EPDM TW	Aramid	EPDM	100		EX	•	n joints		•		ng to		
white-blue-red		EPDM beige	Aramid	EPDM	100			yo	our ope	rating p	paramet	ters.			
orange-blue-orange		EPDM HT	Aramid	EPDM HT	125			I				ı		ı	
red-blue-red		EPDM AF	Aramid	EPDM	100										
green-blue-green		CSM	Aramid	CSM	100										
yellow-blue-grey		NBR	Aramid	CR	100										
white-blue-grey		NBR beige	Aramid	CR	100										
grey-blue-grey		CR	Aramid	CR	90										
lilac-blue-lilac		FPM	Aramid	FPM	180										
-	-	Silicone	Aramid	Silicone	180										
-	-	Silicone	Glass fabric	Silicone	200										

Important information

Application

Type 56 red (EPDM)

For water, sea water, cooling water with glycol or other chemical additives for treating water, saline solutions, weak acids and weak alkali solutions. Unsuitable for aliphatic, aromatic and chlorinated hydrocarbons, oil or oily media.

Type 56 blue (EPDM TW)

Like Type 56 red, but approved for drinking water.

Type 56 white-red (EPDM beige)

Like Type 56 red, but with light-coloured rubber in food-grade.

Type 56 red AF (EPDM AF)

Like Type 56 red, but with abrasion-resistant EPDM rubber compound.

Type 56 green (CSM)

For chemicals, aggressive, chemical wastewater and compressor air containing oil.

Type 56 yellow-grey (NBR)

For oils, fats, gases, diesel fuels, kerosene and crude oil. Not suitable for aromatic and chlorinated hydrocarbons, esters and ketones.

Type 56 white-grey (NBR beige)

Like Type 56 yellow-grey, but with light-coloured internal rubber in food-grade. Not approved for drinking water!

Type 56 grey (CR)

For water, wastewater, swimming pool water, salt water, cooling water with anti-corrosive products containing oil, oil mixtures and compressed air containing oil.

Type 56 red-blue-red (EPDM/aramid)

Like Type 56 red, but with aramid fabric.

Type 56 blue-blue AF (EPDM TW/aramid)

Like Type 56 blue, but with aramid fabric.

Type 56 white-blue-red AF (EPDM beige/aramid)

Like Type 56 white-red, but with aramid fabric.

Type 56 orange-blue-orange AF (EPDM HT/aramid)

Like Type 56 red, but with aramid fabric and for temperatures up to +125 $^{\circ}\text{C}.$

Type 56 red-blue-red AF (EPDM AF/aramid)

Like Type 56 red AF, but with aramid fabric.

Type 56 green-blue-green (CSM/aramid)

Like Type 56 green, but with aramid fabric.

Type 56 yellow-blue-grey (NBR/aramid)

Like Type 56 yellow-grey, but with aramid fabric.

Type 56 white-blue-grey (NBR white/aramid)

Like Type 56 white-grey, but with aramid fabric.

Type 56 grey-blue-grey (CR/aramid)

Like Type 56 grey, but with aramid fabric.

Type 56 lilac-blue-lilac (FPM/aramid)

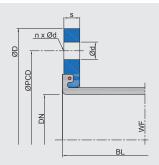
For flue gas desulphurisation systems and bio-diesel. High chemical resistance to benzene, xylene, toluene, aromatic, chlorinated hydrocarbons, mineral acids and fuels with an aromatic content of more than 50 %. For temperatures of up to +180 °C.

Type 56 silicone (silicone/glass fibre or aramid)

Suitable for hot air, acetic acid. Satisfactory resistance to aliphatic engine and gear oils. Also available in foodstuff quality. Excellent resistance to ageing, UV, ozone and weather. Very good radiation resistance. Not for use with steam above 120 °C. No resistance to fuels.

Note!

Detailed material descriptions on pages 5 - 7.



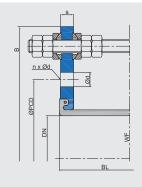
Design A - without tie rods

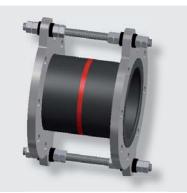
Can be used to absorb compression and lateral movement, as well as to insulate vibration and sound.

Can only absorb minimal expansion.

Dimensions for Design A

DN *1	Overall length	Bellow	Flange PN 10*4						Move	Weight*6		
	BL*2	WF *3	В	ØD	ØPCD	Ød	n	s	axial +	axial	lateral*5 ±	
	mm	mm ²	mm	mm	mm	mm		mm	mm	mm	mm	kg
50	150 - 1000	1963	255	165	125	18	4	16	3	5	12	4.3
65	150 - 1000	3317	275	185	145	18	8	16	3	5	11	5.2
80	150 - 1000	5024	290	200	160	18	8	18	3	5	10	7.0
100	150 - 1000	7850	310	220	180	18	8	18	3	5	10	7.9
125	150 - 1000	12266	340	250	210	18	8	18	3	5	9	10.0
150	150 - 1000	17663	375	285	240	22	8	18	3	5	12	12.0
200	200 - 1000	31400	440	340	295	22	8	20	6	10	11	17.0
250	200 - 1000	49063	509	395	350	22	12	20	6	10	11	20.0
300	200 - 1000	70650	559	445	400	22	12	20	6	10	10	25.0
350	200 - 1000	96163	619	505	460	22	16	25	6	10	10	38.0
400	200 - 1000	125600	700	565	515	26	16	25	6	10	10	38.0
450	200 - 1000	158963	760	615	565	26	20	30	6	10	10	52.0
500	200 - 1000	196250	810	670	620	26	20	30	6	10	10	57.0
600	200 - 1000	282600	930	780	725	30	20	30	6	10	9	75.0
700	200 - 1000	384650	1045	895	840	30	24	35	6	10	9	128.0
800	200 - 1000	502400	1175	1015	950	33	24	40	6	10	9	161.0
900	200 - 1000	635850	1285	1115	1050	33	28	40	6	10	9	197.0
1000	200 - 1000	785000	1400	1230	1160	36	28	40	6	10	8	235.0


^{*1} Intermediate diameters for other standards (e.g. ANSI) are also possible.


Movement absorption is for a bellow design with 6 bar operating pressure.

Design M - with tie rods/shear limiters

For absorbing compression while also absorbing lateral movement.

The use of PTFE-coated spherical washers and conical sockets reduces the frictional force considerably during lateral movement. Can be used for vibration insulation and absorbing lateral movement.

Important information

Please note the appropriate f xed point constructions and plain bearings in your piping system, as well as the tolerances as per the FSA Handbook (see the technical appendix on page 118)! For more information please refer to our installation instructions (p. 97 - 116).

++++ We will be happy to send you further information on the individual types and designs. ++++

^{*2} Overall lengths available from 150/200 mm to 1000 mm.

^{*3} WF = effective area

^{*4} Other standards/dimensions possible.

^{*5} The lateral movement absorption applies to short overall length. The lateral movement absorption increases by 6 mm every 100 mm.

^{*6} For short installation lengths.

DN 50 - DN 300

Type 57 is a conical or eccentric rubber expansion joint that achieves very low flow resistance because of its uncorrugated bellow geometry. It is suitable for conveying media that contain solids, even at high flow rates. It is also characterised by its variety of rubber qualities, which means that a suitable rubber compound is available for every application (see material descriptions on the following pages). Its design means that it can only absorb minimal (axial) compression!

Alternative production lengths are possible in individual cases and subject to agreement.

Type 57 is used in plant engineering, water technology and wastewater technology to absorb lateral movement, as well as to absorb vibration and insulate sound.

Bellow design	Smooth conical/eccentric rubber bellow with reinforcement and moulded sealing bead with core ring (self-sealing - no additional seals required). Suitable for accommodating swiveling flanges.	Flange version	Both sides with swiveling flange made of galvanized steel, with clearance holes, drilled according to DIN PN 10 (standard). Other materials and dimensions are possible.		
Vacuum resistance	Only vacuum-resistant with a vulcanised vacuum supporting spiral.	Accessories	Potential equalisationFlame-resistant protective coversDust and splash protection covers		
Approvals/Conformity	Drinking water approval, FDA and EG 1935/2004 conform		- Earth cover / sun protection hoods - Segment tie rods		

Specifications

Bellow			Permissible operating data												
Colour code	Colour marking	Core (inner)	Reinforce- ment	Cover (outer)	Max. temperature °C	°C	bar	°C	bar	°C	bar	°C	bar	°C	bar
red		EPDM	Polyamide	EPDM	100										
blue		EPDM TW	Polyamide	EPDM	100										
white/red		EPDM beige	Polyamide	EPDM	100										
red		EPDM AF	Polyamide	EPDM	100										
green		CSM	Polyamide	CSM	100										
yellow-grey		NBR	Polyamide	CR	100										
white-grey		NBR beige	Polyamide	CR	100										
grey		CR	Polyamide	CR	90										
red-blue-red		EPDM	Aramid	EPDM	100		_			91					
blue-blue-blue		EPDM TW	Aramid	EPDM	100		EX		•		•	accordir	ng to		
white-blue-red		EPDM beige	Aramid	EPDM	100			yo	our ope	rating p	parame	ers.			
orange-blue-orange		EPDM HT	Aramid	EPDM HT	125							l			
red-blue-red		EPDM AF	Aramid	EPDM	100										
green-blue-green		CSM	Aramid	CSM	100										
yellow-blue-grey		NBR	Aramid	CR	100										
white-blue-grey		NBR beige	Aramid	CR	100										
grey-blue-grey		CR	Aramid	CR	90										
lilac-blue-lilac		FPM	Aramid	FPM	180										
-	-	Silicone	Aramid	Silicone	180										
-	-	Silicone	Glass fabric	Silicone	200										

Important information

Application

Type 57 red (EPDM)

For water, sea water, cooling water with glycol or other chemical additives for treating water, saline solutions, weak acids and weak alkali solutions. Unsuitable for aliphatic, aromatic and chlorinated hydrocarbons, oil or oily media.

Type 57 blue (EPDM TW)

Like Type 57 red, but approved for drinking water.

Type 57 white-red (EPDM beige)

Like Type 57 red, but with light-coloured rubber in food-grade.

Type 57 red AF (EPDM AF)

Like Type 57 red, but with abrasion-resistant EPDM rubber compound.

Type 57 green (CSM)

For chemicals, aggressive, chemical wastewater and compressor air containing oil.

Type 57 yellow-grey (NBR)

For oils, fats, gases, diesel fuels, kerosene and crude oil. Not suitable for aromatic and chlorinated hydrocarbons, esters and ketones.

Type 57 white-grey (NBR beige)

Like Type 57 yellow-grey, but with light-coloured internal rubber in food-grade. Not approval for drinking water!

Type 57 grey (CR)

For water, wastewater, swimming pool water, salt water, cooling water with anti-corrosive products containing oil, oil mixtures and compressed air containing oil.

Type 57 red-blue-red (EPDM/aramid)

Like Type 57 red, but with aramid fabric.

Type 57 blue-blue AF (EPDM TW/aramid)

Like Type 57 blue, but with aramid fabric.

Type 57 white-blue-red AF (EPDM beige/aramid)

Like Type 57 white-red, but with aramid fabric.

Type 57 orange-blue-orange AF (EPDM HT/aramid)

Like Type 57 red, but with aramid fabric and for temperatures up to +125 $^{\circ}\text{C}$

Type 57 red-blue-red AF (EPDM AF/aramid)

Like Type 57 red AF, but with aramid fabric.

Type 57 green-blue-green (CSM/aramid)

Like Type 57 green, but with aramid fabric.

Type 57 yellow-blue-grey (NBR/aramid)

Like Type 57 yellow-grey, but with aramid fabric.

Type 57 white-blue-grey (NBR white/aramid)

Like Type 57 white-grey, but with aramid fabric.

Type 57 grey-blue-grey (CR/aramid)

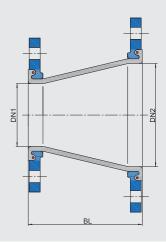
Like Type 57 grey, but with aramid fabric.

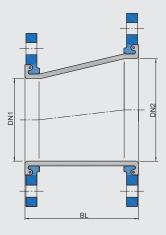
Type 57 lilac-blue-lilac (FPM/aramid)

For flue gas desulphurisation systems and bio-diesel. High chemical resistance to benzene, xylene, toluene, aromatic, chlorinated hydrocarbons, mineral acids and fuels with an aromatic content of more than 50 %. For temperatures of up to 180 °C.

Type 57 silicone (silicone/glass fibre or aramid)

Suitable for hot air, acetic acid. Satisfactory resistance to aliphatic engine and gear oils. Also available in foodstuff quality. Excellent resistance to ageing, UV, ozone and weather. Very good radiation resistance. Not for use with steam above 120 °C.


Detailed material descriptions on pages 5 - 7.


Design A - concentric, without tie rods

Can be used to absorb compression and lateral movement, as well as to insulate vibration and sound. Can only absorb minimal expansion.

Design A - eccentric, without tie rods

Can be used to absorb compression and lateral movement, as well as to insulate vibration and sound. Can only absorb minimal expansion.

Dimensions for Design A Concentric/eccentric

DN1	DN2	Length	Bellow	Movement absorption					
		BL	WF*	axial	lateral				
		mm	mm²	- mm	± mm				
50	80	250	5000	3	8				
50	100	250	7900	3	8				
65	80	300	5000	3	8				
65	100	300	7900	3	8				
80	100	250	7900	3	8				
80	125	250	12300	3	7				
100	125	250	12300	3	7				
100	150	250	17700	3	7				
100	200	300	31400	3	7				
125	150	250	17700	3	7				
125	200	300	31400	4	8				
150	200	300	31400	4	8				
150	250	250	49100	5	8				
200	250	250	49100	4	8				
200	300	300	70700	6	8				
200	350	300	96200	9	12				
250	300	300	70700	4	7				
250	350	300	96200	6	9				
300	350	300	96200	4	7				
300	400	400	125600	7	9				


^{*}WF = effective area

- Movement absorption is for a bellow design with 6 bar operating pressure.
- Free choice of fange connection dimension (DIN, ASTM, JIS, etc.)
- Special overall lengths and nominal diameters are possible in individual cases.

Length limiters/Tie rods

It is advisable to use tie rods/shear limiters on these expansion joints (Design M - see illustration). The conical bellow is inflated by the rise in pressure, which shortens the expansion joint and applies high tensile force to the connections.

It is also available with tie rods only (Design E).

Important information

Please note the appropriate f xed point constructions and plain bearings in your piping system, as well as the tolerances as per the FSA Handbook (see the technical appendix on page 118)! For more information please refer to our installation instructions (p. 97 - 116).

++++ We will be happy to send you further information on the individual types and designs. ++++

DN 50 - DN 3000

Type 58 is a cylindrical rubber expansion joint that achieves very low flow resistance because of its uncorrugated bellow geometry. It is suitable for conveying media that contain solids, even at high flow rates. It is also characterised by its flexible installation length and variety of rubber qualities, which means that a suitable rubber compound is available for every application (see material descriptions on the following pages). Its design means that it can only absorb minimal axial movement!

Type 58 is used in plant engineering, water technology and wastewater technology to absorb lateral movement and vibration and to insulate sound.

Bellow design	Smooth cylindrical rubber bellow with reinforcement and moulded, pressure-resistant solid rubber flanges (self-sealing - no additional seals required). Suitable for accommodating backing flanges.	Flange version	Both sides with backing flange made of galvanized steel, with clearance holes, drilled according to DIN PN 10 (standard). Other materials and dimensions are possible.
Vacuum resistance	Vaccum resistance only short installation lengths. Longer versions should be fitted with a vulcanised vacuum supporting spiral.	Accessories	 Potential equalisation Flame-resistant protective covers Dust and splash protection covers Earth cover / sun protection hoods Segment tie rods
Approvals/Conformity	Drinking water approval, FDA and EG 1935/2004 conform		-

Specifications

Bellow			Bellow design				1	Permis	sible o	peratin	ng data				
Colour code	Colour marking	Core (inner)	Reinforce- ment	Cover (outer)	Max. temperature °C	°C	bar	°C	bar	°C	bar	°C	bar	°C	bar
red		EPDM	Polyamide	EPDM	100										
blue		EPDM TW	Polyamide	EPDM	100										
white/red		EPDM beige	Polyamide	EPDM	100										
red		EPDM AF	Polyamide	EPDM	100										
green		CSM	Polyamide	CSM	100										
yellow-grey		NBR	Polyamide	CR	100										
white-grey		NBR beige	Polyamide	CR	100										
grey		CR	Polyamide	CR	90										
red-blue-red		EPDM	Aramid	EPDM	100		_								
blue-blue-blue		EPDM TW	Aramid	EPDM	100		Ex	xpansion joints will designed according to							
white-blue-red		EPDM beige	Aramid	EPDM	100			y	our ope	rating p	parame	ters.			
orange-blue-orange		EPDM HT	Aramid	EPDM HT	125			ı		I		ı		ı	
red-blue-red		EPDM AF	Aramid	EPDM	100										
green-blue-green		CSM	Aramid	CSM	100										
yellow-blue-grey		NBR	Aramid	CR	100										
white-blue-grey		NBR beige	Aramid	CR	100										
grey-blue-grey		CR	Aramid	CR	90										
lilac-blue-lilac		FPM	Aramid	FPM	180										
-	-	Silicone	Aramid	Silicone	180										
-	-	Silicone	Glass fabric	Silicone	200										

Important information

Application

Type 58 red (EPDM)

For water, sea water, cooling water with glycol or other chemical additives for treating water, saline solutions, weak acids and weak alkali solutions. Unsuitable for aliphatic, aromatic and chlorinated hydrocarbons, oil or oily media.

Type 58 blue (EPDM TW)

Like Type 58 red, but approved for drinking water.

Type 58 white-red (EPDM beige)

Like Type 58 red, but with light-coloured rubber in food-grade.

Type 58 red AF (EPDM AF)

Like Type 58 red, but with abrasion-resistant EPDM rubber compound.

Type 58 green (CSM)

For chemicals, aggressive, chemical wastewater and compressor air containing oil. Electrically insulating.

Type 58 yellow-grey (NBR)

For oils, fats, gases, diesel fuels, kerosene and crude oil. Not suitable for aromatic and chlorinated hydrocarbons, esters and ketones.

Type 58 white-grey (NBR beige)

Like Type 58 yellow-grey, but with light-coloured internal rubber in food-grade. Not approval for drinking water!

Type 58 grey (CR)

For water, wastewater, swimming pool water, salt water, cooling water with anti-corrosive products containing oil, oil mixtures and compressed air containing oil.

Type 58 red-blue-red (EPDM/aramid)

Like Type 58 red, but with aramid fabric.

Type 58 blue-blue AF (EPDM TW/aramid)

Like Type 58 blue, but with aramid fabric.

Type 58 white-blue-red AF (EPDM beige/aramid)

Like Type 58 white-red, but with aramid fabric.

Type 58 orange-blue-orange AF (EPDM HT/aramid)

Like Type 58 red,but with aramid fabric and for temperatures up to +125 $^{\circ}$ C.

Type 58 red-blue-red AF (EPDM AF/aramid)

Like Type 58 red AF, but with aramid fabric.

Type 58 green-blue-green (CSM/aramid)

Like Type 58 green, but with aramid fabric.

Type 58 yellow-blue-grey (NBR/aramid)

Like Type 58 yellow-grey, but with aramid fabric.

Type 58 white-blue-grey (NBR white/aramid)

Like Type 58 white-grey, but with aramid fabric.

Type 58 grey-blue-grey (CR/aramid)

Like Type 58 grey, but with aramid fabric.

Type 58 lilac-blue-lilac (FPM/aramid)

For flue gas desulphurisation systems and bio-diesel. High chemical resistance to benzene, xylene, toluene, aromatic, chlorinated hydrocarbons, mineral acids and fuels with an aromatic content of more than 50 %. For temperatures of up to +180 °C.

Type 58 silicone (silicone/glass fibre or aramid)

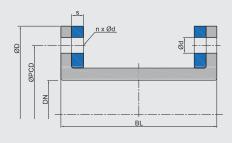
Suitable for hot air, acetic acid. Satisfactory resistance to aliphatic engine and gear oils. Also available in foodstuff quality. Excellent resistance to ageing, UV, ozone and weather. Very good radiation resistance. Not for use with steam above 120 °C. No resistance to fuels.

Note!

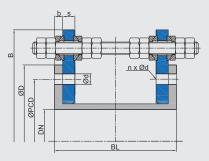
Detailed material descriptions on pages 5 - 7.

Important information

Please note the appropriate f xed point constructions and plain bearings in your piping system, as well as the tolerances as per the FSA Handbook (see the technical appendix on page 118)! For more information please refer to our installation instructions (p. 97 - 116).


++++ We will be happy to send you further information on the individual types and designs. ++++

Design A - without tie rods


Can be used to absorb compression and lateral movement, as well as to absorb vibration and insulate sound.

Can only absorb minimal expansion.

Design M - with tie rods / shear limiters

For absorbing compression while also absorbing lateral movement. The use of PTFE-coated spherical washers and conical sockets reduces the frictional force considerably during lateral movement. Can be used to absorb vibration and lateral movement.

Note: Can only absorb lateral movement!

Dimensions for Design A / Design M

DN	Overall length	Be	llow			Flange P	N 10*3			Movement a	absorption	Weight
	BL*1	b	WF *2	ØD	ØPCD	Ød	n	s	В	axial -	lateral*4 ±	
	mm	mm	mm ²	mm	mm	mm		mm	mm	mm	mm	kg
50	200 - 1000		1963	165	125	18	4		255	5	10	
65	200 - 1000	Φ	3317	185	145	18	8	ىو	275	5	10	
80	200 - 1000	presre	5024	200	160	18	8	presre	290	5	10	
100	200 - 1000		7850	220	180	18	8	g G	310	5	10	
125	200 - 1000	on operating	12266	250	210	18	8	operating	340	5	10	
150	200 - 1000	63	17663	285	240	22	8) erg	375	5	10	
200	200 - 1000	g -	31400	340	295	22	8	g	462	13	14	1
250	200 - 1000		49063	395	350	22	12	t on	517	13	14	1
300	200 - 1000	en	70650	445	400	22	12	gen	567	13	13	1
350	200 - 1000	Dependent	96163	505	460	22	16	Dependent	627	13	13	1
400	200 - 1000	Эер	125600	565	515	26	16	de	703	13	13	1
450	200 - 1000		158963	615	565	26	20	"	753	13	12	2
500	200 - 1000	<u>e</u>	196250	670	620	26	20	<u>a</u>	808	13	12	,
600	200 - 1000	pressure	282600	780	725	30	20	ssure	942	13	12	2
700	200 - 1000	pre	384650	895	840	30	24	pre	1057	13	11	2
800	200 - 1000	ng	502400	1015	950	33	24	gu	1117	15	13	8
900	200 - 1000	on operating	635850	1115	1050	33	28	operating	1277	15	13	Ş
1000	200 - 1000	ədc	785000	1230	1160	36	28	obe	1392	15	13	10
1100	200 - 1000	L C	949850	1345	1270	36	32	- E	1507	15	12	12
1200	200 - 1000		1130400	1455	1380	39	32		1617	15	12	13
1300	200 - 1000	Dependent	1326650	1565	1485	42	32	Dependent	1727	15	12	15
1400	200 - 1000	be	1538600	1675	1590	42	36	e de	1837	15	12	17
1500	200 - 1000	Ď	1766250	1795	1705	48	36	ă	1957	15	12	19
1600	200 - 1000	d)	2009600	1915	1820	48	40	ω	2100	15	11	22
1700	200 - 1000	sur	2268650	2015	1920	48	44	sur	2200	15	11	29
1800	200 - 1000	pressure	2543400	2115	2020	48	44	pressure	2300	15	11	30
1900	200 - 1000	g D	2833850	2220	2125	48	48		2406	15	11	32
2000	200 - 1000	Dependent on operating	3140000	2325	2230	48	48	operating	2511	15	11	35
2100	200 - 1000)er	3461850	2440	2335	56	48	Ser	2626	18	13	38
2200	200 - 1000	ρſ	3799400	2550	2440	56	52	0 4	2736	18	13	4
2400	200 - 1000	t or	4521600	2760	2650	56	56	it on	2946	18	12	46
2500	200 - 1000	gen	4906250	2860	2750	56	56	Dependent	3046	18	12	48
2600	200 - 1000	enc	5306600	2960	2850	56	60	en	3146	18	12	50
2800	200 - 1000	Cep	6154400	3180	3070	56	64	Dep	3366	18	12	57
3000	200 - 1000		7065000	3405	3290	62	68		3591	18	12	64

^{*1} Overall lengths available from 200 mm to 1000 mm.

^{*2} WF = effective area
*3 Other standards/dimensions possible.

^{*4} The lateral movement absorption applies to short installation lengths.
The lateral movement absorption increases by 6 mm every 100 mm.

⁻ Maximum size: DN 4000.

⁻ Movement absorption corresponds to bellow design with max. 6 bar operating pressure.

DN 350 - DN 1500

Type 59 is a conical or eccentric-conical rubber expansion joint that achieves very low flow resistance because of its uncorrugated bellow geometry. It is suitable for conveying media that contain solids, even at high flow rates. It is also characterised by its variety of rubber qualities, which means that a suitable rubber compound is available for every application (see material descriptions on the following pages). Its design means that it can only absorb minimal expansion! Alternate installation lengths are possible in individual cases after prior examination.

Type 59 is used in plant engineering, water technology and wastewater technology, where it is used to absorb lateral movement and vibration and to insulate sound.

Bellow design

Smooth conical or eccentric rubber bellow with reinforcement with a moulded, pressure-resistant solid rubber flange on the small side and moulded sealing bead with a core ring on the other side (self-sealing - no additional seals required). Can also be constructed with both sides full faced rubber flange depending on the size and pressure. Suitable for backing/swiveling flanges.

Flange version

On one side a galvanized steel backing flange, on the other, a swiveling galvanized steel flange with clearance holes, drilled according to DIN PN 10 (standard) or with both sides galvanized steel backing flange. Other materials and dimensions are possible.

Vacuum resistance

Only vacuum-resistant with a vulcanised vacuum supporting spiral.

Accessories

- Potential equalisation
- Flame-resistant protective covers
- Dust and splash protection covers
- Earth cover / sun protection hoods
- Segment tie rods

Approvals/Conformity

Drinking water approval, FDA and EG 1935/2004 conform

Specifications

Bellow			Bellow design				F	Permis	sible o	peratin	g data				
Colour code	Colour marking	Core (inner)	Reinforce- ment	Cover (outer)	Max. temperature °C	°C	bar	°C	bar	°C	bar	°C	bar	°C	bar
red		EPDM	Polyamide	EPDM	100										
blue		EPDM TW	Polyamide	EPDM	100										
white/red		EPDM beige	Polyamide	EPDM	100										
red		EPDM AF	Polyamide	EPDM	100										
green		CSM	Polyamide	CSM	100										
yellow-grey		NBR	Polyamide	CR	100										
white-grey		NBR beige	Polyamide	CR	100										
grey		CR	Polyamide	CR	90										
red-blue-red		EPDM	Aramid	EPDM	100		г		- :-:-4-	ممام اللانية					
blue-blue-blue		EPDM TW	Aramid	EPDM	100		EX	•	n joints		•		ng to		
white-blue-red		EPDM beige	Aramid	EPDM	100			y	our ope	rating p	aramei	ers.			
orange-blue-orange		EPDM HT	Aramid	EPDM HT	125										
red-blue-red		EPDM AF	Aramid	EPDM	100										
green-blue-green		CSM	Aramid	CSM	100										
yellow-blue-grey		NBR	Aramid	CR	100										
white-blue-grey		NBR beige	Aramid	CR	100										
grey-blue-grey		CR	Aramid	CR	90										
lilac-blue-lilac		FPM	Aramid	FPM	180										
-	-	Silicone	Aramid	Silicone	180										
-	-	Silicone	Glass fabric	Silicone	200										

Important information

Application

Type 59 red (EPDM)

For water, sea water, cooling water with glycol or other chemical additives for treating water, saline solutions, weak acids and weak alkali solutions. Unsuitable for aliphatic, aromatic and chlorinated hydrocarbons, oil or oily media.

Type 59 blue (EPDM TW)

Like Type 59 red, but approved for drinking water.

Type 59 white-red (EPDM beige)

Like Type 59 red, but with light-coloured rubber in food-grade.

Type 59 red AF (EPDM AF)

Like Type 59 red, but with abrasion-resistant EPDM rubber compound.

Type 59 green (CSM)

For chemicals, aggressive, chemical wastewater and compressor air containing oil.

Type 59 yellow-grey (NBR)

For oils, fats, gases, diesel fuels, kerosene and crude oil. Electrically dissipative. Not suitable for aromatic and chlorinated hydrocarbons, esters and ketones.

Type 59 white-grey (NBR beige)

Like Type 59 yellow-grey, but with light-coloured internal rubber in food-grade. Not approval for drinking water!

Type 59 grey (CR)

For water, wastewater, swimming pool water, salt water, cooling water with anti-corrosive products containing oil, oil mixtures and compressed air containing oil.

Type 59 red-blue-red (EPDM/aramid)

Like Type 59 red, but with aramid fabric.

Type 59 blue-blue-blue AF (EPDM TW/aramid)

Like Type 59 blue, but with aramid fabric.

Type 59 white-blue-red AF (EPDM beige/aramid)

Like Type 59 white-red, but with aramid fabric

Type 59 orange-blue-orange AF (EPDM HT/aramid)

Like Type 59 red, but with aramid fabric and for temperatures up to +125 $^{\circ}\text{C}.$

Type 59 red-blue-red AF (EPDM AF/aramid)

Like Type 59 red AF, but with aramid fabric.

Type 59 green-blue-green (CSM/aramid)

Like Type 59 green, but with aramid fabric.

Type 59 yellow-blue-grey (NBR/aramid)

Like Type 59 yellow-grey, but with aramid.

Type 59 white-blue-grey (NBR white/aramid)

Like Type 59 white-grey, but with aramid fabric.

Type 59 grey-blue-grey (CR/aramid)

Like Type 59 grey, but with aramid fabric.

Type 59 lilac-blue-lilac (FPM/aramid)

For flue gas desulphurisation systems and bio-diesel. High chemical resistance to benzene, xylene, toluene, aromatic, chlorinated hydrocarbons, mineral acids and fuels with an aromatic content of more than 50 %. For temperatures of up to +180 °C.

Type 59 silicone (silicone/glass fibre or aramid)

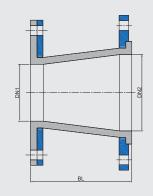
Suitable for hot air, acetic acid. Satisfactory resistance to aliphatic engine and gear oils. Also available in foodstuff quality. Excellent resistance to ageing, UV, ozone and weather. Very good radiation resistance. Not for use with steam above 120 °C. No resistance to fuels.

Note!

Detailed material descriptions on pages 5 - 7.

Important information

Please note the appropriate f xed point constructions and plain bearings in your piping system, as well as the tolerances as per the FSA Handbook (see the technical appendix on page 118)! You can f nd information on this in our installation instructions (p. 97 - 116).


++++ We will be happy to send you further information on the individual types and designs. ++++

Design A - concentric, without tie rods

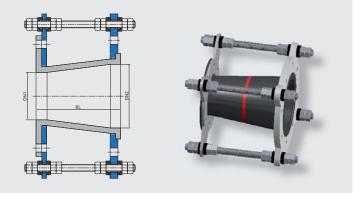
Can be used to absorb compression and lateral movement, as well as to absorb vibration and insulate sound.

Can only absorb minimal expansion.

Dimensions - Design A, concentric

DN1	DN2	Length	Bellow	Movement	absorption
		BL	WF*	axial	lateral
		mm	mm ²	- mm	± mm
350	400	300	125600	4	7
350	500	350	196250	10	12
400	500	400	196250	7	8
400	600	650	282600	13	13
500	600	340	282600	7	8
500	700	650	384650	13	13
500	800	900	502400	20	17
500	900	1150	635850	26	21
500	1000	1400	785000	33	25
500	1100	1650	949850	41	29
500	1200	1900	1130400	48	32
600	700	400	384650	8	8
600	800	650	502400	14	12
600	900	900	635850	21	16
600	1000	1150	785000	28	20
600	1100	1400	949850	35	24
600	1200	1650	1130400	42	28
700	800	400	502400	8	8
700	900	650	635850	15	12
700	1000	900	785000	21	16
700	1100	1150	949850	28	20
700	1200	1400	1130400	36	24
700	1300	1650	1326650	43	27
800	900	400	635850	8	7
800	1000	650	785000	15	12
800	1100	900	949850	22	16
800	1200	1150	1130400	29	20
800	1300	1400	1326650	37	23

*	WF	=	effective	area
	VVI	=	enective	area

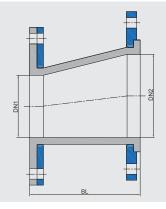

DN1	DN2	Length	Bellow	Movement	absorption
		BL	WF*	axial	lateral
		mm	mm²	mm	± mm
800	1400	1650	1538600	45	27
900	1000	400	785000	8	7
900	1100	650	949850	15	11
900	1200	900	1130400	23	15
900	1300	1150	1326650	30	19
900	1400	1400	1538600	38	23
900	1500	1650	1766250	46	27
1000	1100	400	949850	9	7
1000	1200	650	1130400	16	11
1000	1300	900	1326650	23	15
1000	1400	1150	1538600	31	19
1000	1500	1400	1766250	39	22
1000	1600	1650	2009600	47	26
1100	1200	400	1130400	9	7
1100	1300	650	1326650	16	11
1100	1400	900	1538600	24	15
1100	1500	1150	1766250	32	18
1100	1600	1400	2009600	40	22
1200	1300	400	1326650	9	7
1200	1400	650	1538600	17	11
1200	1500	900	1766250	25	14
1200	1600	1150	2009600	33	18
1300	1400	400	1538600	9	7
1300	1500	650	1766250	17	10
1300	1600	900	2009600	25	14
1400	1500	400	1766250	9	6
1400	1600	650	2009600	17	10
1500	1600	400	2009600	10	6

⁻ Movement absorption is for a bellow design with 6 bar operating pressure. - Other f ange connection dimensions available on request.

Length limiters / Tie rods

It is advisable to use tie rods / shear limiters on these expansion joints (Design M - see illustration). The conical bellow is inflated by the rise in pressure, which shortens the expansion joint and applies high tensile force to the connections.

It is also available with tie rods only (Design E).

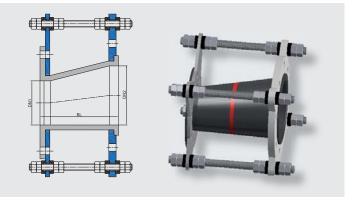

⁻ Special overall lengths and nominal diameter are possible in individual cases.

Design A - eccentric, without tie rods

Can be used to absorb compression and lateral movement, as well as to absorb vibration and insulate sound.

Can only absorb minimal expansion.

Dimensions - Design A, eccentric


DN1	DN2	Length	Bellow	Movement	absorption
		BL	WF*	axial	lateral ±
		mm	mm²	mm	mm
350	400	350	1125600	5	8
350	500	650	196250	11	14
400	500	500	196250	8	11
400	600	750	282600	14	15
500	600	500	282600	8	10
500	700	750	384650	14	15
500	800	1050	502400	21	20
500	900	1300	635850	28	24
500	1000	1550	785000	35	28
500	1100	1850	949850	43	32
500	1200	2100	1130400	50	36
600	700	500	384650	9	10
600	800	800	502400	15	15
600	900	1050	635850	22	19
600	1000	1300	785000	29	23
600	1100	1600	949850	37	28
600	1200	1850	1130400	44	31
600	1300	2100	1326650	52	35
700	800	550	502400	9	10
700	900	800	635850	16	15
700	1000	1050	785000	23	19
700	1100	1350	949850	30	23
700	1200	1600	1130400	38	27
700	1300	1850	1326650	45	31
700	1400	2150	1538600	54	35
800	900	550	635850	10	10
800	1000	800	785000	16	14
800	1100	1100	949850	24	19

DN1	DN2	Length BL	Bellow WF*	Movement axial	absorption lateral
		mm	mm²	- mm	± mm
800	1200	1350	1130400	31	23
800	1300	1600	1326650	38	27
800	1400	1900	1538600	47	31
800	1500	2150	1766250	55	35
900	1000	550	785000	10	10
900	1100	850	949850	17	15
900	1200	1100	1130400	25	19
900	1300	1150	1326650	32	22
900	1400	1650	1538600	40	27
900	1500	1900	1766250	48	31
900	1600	2150	2009600	57	34
1000	1100	600	949850	11	10
1000	1200	850	1130400	18	14
1100	1200	600	1130400	11	10
1100	1300	850	1326650	18	14
1100	1400	1150	1538600	27	19
1100	1500	1400	1766250	34	22
1100	1600	16500	2009600	42	26
1200	1300	600	1326650	11	10
1200	1400	900	1538600	19	15
1200	1500	1150	1766250	27	18
1200	1600	1400	2009600	35	22
1300	1400	650	1538600	12	11
1300	1500	900	1766250	20	14
1300	1600	1150	2009600	28	18
1400	1500	650	1766250	12	10
1400	1600	900	2009600	20	14
1500	1600	650	2009600	12	10

Length limiters / Tie rods

It is advisable to use tie rods/shear limiters on these expansion joints (Design M - see illustration), as the conical bellow is inflated by the rise in pressure, which shortens the expansion joint and applies high tensile force to the connections.

It is also available with tie rods only (Design E).

<sup>Movement absorption is for a bellow design with 6 bar operating pressure.
Other f ange connection dimensions available on request.
Special overall lengths and nominal diameter are possible in individual cases.</sup>

WILLBRANDT Pipe Connector WRG Type 60

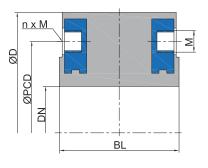
DN 20 - DN 200

Type 60 is an uncorrugated solid rubber pipe connector with vulcanised steel flanges. Its straight, uncorrugated passage means that it achieves very low flow resistance. Due to its design, it can only absorb slight surface vibration and insulate sound, but cannot be used as a expansion joint to absorb movement. It is made from EPDM rubber.

Type 60 is mainly used on pumps, machines and apparaturs in building technology in order to absorb surface vibration and insulate sound. It can also be used to for a galvanic separation and to prevent damage to pipes made from different materials.

Bellow design	Smooth, cylindrical rubber body with vulcanised flange rings. The rubber-metal pipe connector is self-sealing (no additional seals required).	Flange version	Vulcanised steel flanges with threaded blind holes (drilled according to DIN PN 6 or PN 10).
Temperature/Pressure	100/110 °C at 10/6 bar	Approvals	TÜV certification according to DIN 4809 standard for heating systems.

Dimensions


DN	Length	Bellow		FI	ange PN 6			Fla	ange PN 10	
		WF*	ØD	ØPCD	Screw dimensions	Weight	ØD	ØPCD	Screw dimensions	Weight
	mm	mm ²	mm	mm		kg	mm	mm		kg
20	70	300	90	65	4 x M10 x 25	1.0	105	75	4 x M12 x 30	1.8
25	70	300	100	75	4 x M10 x 25	1.5	115	85	4 x M12 x 30	2.2
32	70	800	120	90	4 x M12 x 30	2.2	140	100	4 x M16 x 30	3.3
40	70	1300	130	100	4 x M12 x 30	2.6	150	110	4 x M16 x 30	3.7
50	70	2000	140	110	4 x M12 x 30	2.8	165	125	4 x M16 x 30	4.2
65	70	3300	160	130	4 x M12 x 30	3.7	185	145	4 x M16 x 30	5.2
80	70	5000	190	150	4 x M16 x 35	5.2	200	160	8 x M16 x 35	5.7
100	70	7900	210	170	4 x M16 x 35	5.8	220	180	8 x M16 x 35	6.5
125	70	12300	240	200	8 x M16 x 35	6.9	250	210	8 x M20 x 40	8.1
150	70	17700	265	225	8 x M16 x 35	8.3	295	240	8 x M20 x 40	10.0
200	70 / 90	31400	-	-	-	-	340	295	8 x M20 x 45	14.7

^{*} WF = effective area

Important planning and installation instructions

Type 60 CANNOT absorb any axial, lateral or angular movement. It is only suitable for insulating against high-frequency vibration and for a galvanic separation of two pipes.

It must be installed completely stress-free in the pipe. To do this, it is necessary to include the appropriate fixed points and plain bearings. When tightening the flange bolts, ensure that you use the criss-cross tightening sequence. The maximum tightening torque is 30 N/m. It should only be fitted using hexagon head bolts according to ISO 4017 and a washer. The correct bolt length must be used (see installation instructions).

Important information

For aggressive media, please see the resistance table (can be requested separately).

The bellows should not be painted or insulated. Please refer to the installation instructions.

Please note the appropriate f xed point constructions and plain bearings in your piping system!

For more information please refer to our installation instructions.

++++ We will be happy to send you further information on the individual types and designs. ++++

DN 50 - DN 1500

Type 61 is a handmade low-corrugated rubber expansion joint that achieves very low flow resistance because of its low-corrugated bellow geometry. Both ends of the bellow are cylindrical for fixing clamps. It is also characterised by very high movement absorption in all directions and its variety of rubber qualities, which means that a suitable rubber compound is available for almost every application (see material descriptions on the following pages).

Type 61 is used in plant engineering, engine construction, ventilation technology and wastewater technology, where it is specifically used to absorb movement and vibration and to insulate sound.

Bellow design	Low-corrugated rubber bellow with reinforcement. Both ends cylindrical for fixing clamps. The standard bellow is corrugated. Uncorrugated and multi-corrugated versions for greater movement absorption	Connections	Sleeve ends for ISO pipes (standard) for fixing clamps. The clamp width should be at least 20 mm (up to 3 bar: one clamp per side; above 3 bar: two clamps per side).
Vacuum resistance	are possible. Can only be used for vacuum	Approvals/Conformity	Drinking water, FDA and EG 1935/2004 conform
	applications with a vacuum supporting spiral/ring.	Accessories	Fixing clampsPotential equalisation (vulcanised braid)Flame-resistant protective coversDust and splash protection covers

Specifications

Bellow		Bellow design			Permissible operating data										
Colour code	Colour marking	Core (inner)	Reinforce- ment	Cover (outer)	Max. temperature °C	°C	bar	°C	bar	°C	bar	°C	bar	°C	bar
red		EPDM	Polyamide	EPDM	100										
blue		EPDM TW	Polyamide	EPDM	100										
white/red		EPDM beige	Polyamide	EPDM	100										
red		EPDM AF	Polyamide	EPDM	100										
green		CSM	Polyamide	CSM	100										
yellow-grey		NBR	Polyamide	CR	100										
white-grey		NBR beige	Polyamide	CR	100										
grey		CR	Polyamide	CR	90										
red-blue-red		EPDM	Aramid	EPDM	100										
blue-blue-blue		EPDM TW	Aramid	EPDM	100		Expansion joints will designed according to								
white-blue-red		EPDM beige	Aramid	EPDM	100		your operating parameters.								
orange-blue-orange		EPDM HT	Aramid	EPDM HT	125										
red-blue-red		EPDM AF	Aramid	EPDM	100										
green-blue-green		CSM	Aramid	CSM	100										
yellow-blue-grey		NBR	Aramid	CR	100										
white-blue-grey		NBR beige	Aramid	CR	100										
grey-blue-grey		CR	Aramid	CR	90										
lilac-blue-lilac		FPM	Aramid	FPM	180										
-	-	Silicone	Aramid	Silicone	180										
-	-	Silicone	Glass fabric	Silicone	200										

Important information

Application

Type 61 red (EPDM)

For water, sea water, cooling water with glycol or other chemical additives for treating water, saline solutions, weak acids and weak alkali solutions. Unsuitable for aliphatic, aromatic and chlorinated hydrocarbons, oil or oily media.

Type 61 blue (EPDM TW)

Like Type 61 red, but approved for drinking water.

Type 61 white-red (EPDM beige)

Like Type 61 red, but with light-coloured rubber in food-grade.

Type 61 red AF (EPDM AF)

Like Type 61 red, but with abrasion-resistant EPDM rubber compound.

Type 61 green (CSM)

For chemicals, aggressive, chemical wastewater and compressor air containing oil.

Type 61 yellow-grey (NBR)

For oils, fats, gases, diesel fuels, kerosene and crude oil. Not suitable for aromatic and chlorinated hydrocarbons, esters and ketones.

Type 61 white-grey (NBR beige)

Like Type 61 yellow-grey, but with light-coloured internal rubber in food-grade. Not approved for drinking water!

Type 61 grey (CR)

For water, wastewater, swimming pool water, salt water, cooling water with anti-corrosive products containing oil, oil mixtures and compressed air containing oil.

Type 61 red-blue-red (EPDM/aramid)

Like Type 61 red, but with aramid fabric.

Type 61 blue-blue AF (EPDM TW/aramid)

Like Type 61 blue, but with aramid fabric.

Type 61 white-blue-red AF (EPDM beige/aramid)

Like Type 61 white-red, but with aramid fabric.

Type 61 orange-blue-orange AF (EPDM HT/aramid)

Like Type 61 red, but with aramid fabric and for temperatures up to +125 $^{\circ}\text{C}.$

Type 61 red-blue-red AF (EPDM AF/aramid)

Like Type 61 red AF, but with aramid fabric.

Type 61 green-blue-green (CSM/aramid)

Like Type 61 green, but with aramid fabric.

Type 61 yellow-blue-grey (NBR/aramid)

Like Type 61 yellow-grey, but with aramid fabric.

Type 61 white-blue-grey (NBR white/aramid)

Like Type 61 white-grey, but with aramid fabric.

Type 61 grey-blue-grey (CR/aramid)

Like Type 61 grey, but with aramid fabric.

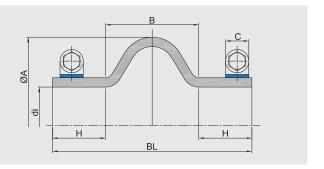
Type 61 lilac-blue-lilac (FPM/aramid)

For flue gas desulphurisation systems and bio-diesel. High chemical resistance to benzene, xylene, toluene, aromatic, chlorinated hydrocarbons, mineral acids and fuels with an aromatic content of more than 50 %. For temperatures of up to +180 °C.

Type 61 silicone (silicone/glass fibre or aramid)

Suitable for hot air, acetic acid. Satisfactory resistance to aliphatic engine and gear oils. Also available in foodstuff quality. Excellent resistance to ageing, UV, ozone and weather. Very good radiation resistance. Not for use with steam above 120 °C. No resistance to fuels.

Note!


Detailed material descriptions on pages 5 - 7.

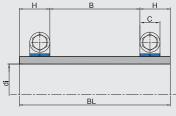
Type 61-1 - single-corrugated

Can be used for movement absorption in any direction (for combined movements, see the movement diagram in the technical appendix), noise and vibration insulation.

The expansion joint's reaction force must be absorbed using suitable pipes with corresponding fixed, floating and plain bearings.

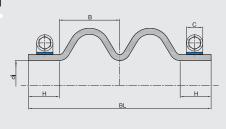
Dimensions - Type 61-1

DN	Length	Bellow				Pressure					
	BL	di	WF*	Cylinder end H	Installation gap B	Clamp C	axial +	axial -	lateral ±	angular ±	Max.
	mm	mm	cm ²	mm	mm	mm	mm	mm	mm	∠°	bar
50	250	60.3	155	55	140	20	15	30	25	21.8	6
65	250	76.1	191	55	140	20	15	30	25	17.1	6
80	250	88.9	224	55	140	20	15	30	25	14.0	6
100	250	114.1	297	55	140	20	15	30	25	11.3	6
125	250	139.7	379	55	140	20	15	30	25	9.1	6
150	250	168.3	484	55	140	20	15	30	25	7.6	6
200	250	219.1	703	55	140	20	15	30	25	5.7	6
250	250	273.0	979	55	140	20	15	30	25	4.6	6
300	250	323.9	1281	55	140	20	15	30	25	3.8	6
350	250	355.6	1292	65	120	25	15	30	15	3.3	6
400	250	406.4	1636	65	120	25	10	30	15	2.9	6
450	250	457.0	2020	65	120	25	10	30	15	2.5	6
500	250	508.0	2445	65	120	25	10	30	15	2.3	6
600	250	610.0	3417	65	120	25	10	30	15	1.9	4
650	250	660.4	3964	65	120	25	10	30	15	1.8	4
700	250	711.0	4551	65	120	25	10	30	15	1.6	4
750	250	762.0	5178	65	120	25	10	30	15	1.5	4
800	250	813.0	5847	65	120	25	10	30	15	1.4	4
900	250	914.0	7305	65	120	25	10	30	15	1.3	4
1000	250	1016.0	8925	65	120	25	10	30	15	1.3	4
1100	250	1117.6	10496	65	120	25	10	30	15	1.1	3
1200	250	1219.0	12370	65	120	25	10	30	15	1.0	3
1300	250	1320.8	14420	65	120	25	10	30	15	0.9	2
1400	250	1422.0	16627	65	120	25	10	30	15	0.8	2
1500	250	1524.0	18991	65	120	25	10	30	15	0.8	2


^{*} WF = effective area

- Intermediate sizes and alterations to the overall length are available upon request.
- Greater movement absorption is possible by altering the overall length / corrugation profile and switching to a multi-corrugated type (up to 5 corrugations).
- The use of a vacuum supporting ring (Type 61-...V) reduces the movement absorption by 60 % (axial: +; angular: +/-).

Designs


Type 61-0 - uncorrugated

Can be used to absorb vibration and insulate sound. Cannot be used to absorb axial movement.

Type 61-2 - double-corrugated

Can be used to absorb movement in any direction (for combined movements, see the movement diagram in the technical appendix), to absorb vibration and to insulate sound.

Important information

Please note the appropriate f xed point constructions and plain bearings in your piping system, as well as the tolerances as per the FSA Handbook (see the technical appendix on page 118)! For more information please refer to our installation instructions (p. 97 - 116).

++++ We will be happy to send you further information on the individual types and designs. ++++

WILLBRANDT Drainage Hose Type 62

DN 50 - DN 600

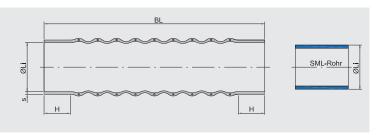
Type 62 is a handmade, low multi-corrugated rubber hose. Its multiple corrugation makes it very flexible and results in very low inherent resistance. Its installation length is also very flexible. Both ends of the hose are cylindrical for fixing clamps.

Type 62 is used to absorb movement and vibration in bridge and building drainage. It is designed for the high temperature fluctuations and wide variety of media in these applications.

Construction	Continuous low-corrugated rubber hose with reinforcement; integrated, covered steel wire spiral and spiral-free cylindrical	Pressure resistance	Max. operating pressure: 0.5 bar; or: 0.3 bar vacuum.
	sleeve ends for fixing clamps.	Connections	Sleeve ends for ISO pipes (standard) for
Material	Chloroprene (CR) with polyamide cord reinforcement		fixing clamps. Other connection standards (e.g. SML pipe or special dimensions) are possible.
Temperature	Max. 70 °C (depressurized), or max. 50 °C (0,5 bar)	Accessories	Fixing clampsPotential equalisation (vulcanised braid)

Dimensions

1	Bellow			Dimensions	
DN	Li ISO pipe	Li SML pipe	Н	S	Installation length
	mm	mm	mm	mm	
50	60.3	58	50	5 - 6	300 - 3000
65	76.1	-	50	5 - 6	300 - 3000
70	-	78	50	5 - 6	300 - 3000
80	88.9	83	50	5 - 6	300 - 3000
100	114.3	110	50	5 - 6	300 - 3000
125	139.7	135	50	5 - 6	300 - 3000
150	168.3	160	50	5 - 6	300 - 3000
200	219.1	210	50	5 - 6	300 - 3000
250	273.0	274	50	5 - 6	300 - 3000
300	323.9	326	75	5 - 6	300 - 3000
350	355.6	429	75	5 - 6	300 - 3000
400	406.4	-	75	5 - 6	300 - 3000
500	508.0	532	100	5 - 6	300 - 3000
600	610.0	635	100	5 - 6	300 - 3000


Permissible movement absorption (not in combination):

Max. axial - = (installation length - 2 x H) x 0.3 [mm]

Max axial + = only possible with pre-compressed installation length

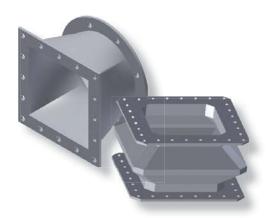
lateral +/- = (installation length - 2 x H) x 0.15 [mm] = perm. lateral +/-

Special connection dimensions available upon request.

Important information

During installation, make a note of the existing temperatures and pre-stress accordingly .

Clamp torque for GBS clamps: 25 Nm. When ordering, specify the pipe diameter for the sleeve extension. The bellows should not be painted or insulated.


Please note the installation instructions and tolerances as per the FSA Handbook (page 118) in the technical appendix!

++++ We will be happy to send you further information on the individual types and designs. ++++

Type 63 is a freely moulded rubber expansion joint that is designed and manufactured according to your specifications and construction dimensions. The cross-section can be round, square, oval or a combination of these. The multi-corrugated bellow option allows greater movement absorption. There are also a large number of rubber qualities available, which means that you can select a suitable rubber compound for almost any application (see the material descriptions on the following pages).

Type 63 is used to compensate movement, offsets and vibration in air, water and chemical plants.

Bellow design	Reinforced rubber bellow. Choice of cylindrical ends for fixing clamps/tension bands, clamping bars, or a moulded, pressure-resistant solid rubber flange,	Fixing	The type of clamp / tension bands and the type of holes for the backing flange can be freely selected.
	self-sealing (no additional seal necessary), suitable for backing flanges. The bellow can be uncorrugated, single-/multi-corrugated or pleated.	Approvals/Conformity	Drinking water approval FDA and EG 1935/2004 conform
Pressure resistance	Max. operating pressure: 10 bar → As this is a free-form item, the max. permissible pressure is very dependent on the precise form!	Accessories	 Potential equalisation (vulcanised braid) Guided sleeves Flame-resistant protective covers Dust and splash protection covers Earth cover / sun protection hoods Tie rods
Vacuum resistance	Only vacuum-resistant with a vacuum supporting ring.		

Specifications

Bellow			Bellow design		ĺ		F	Permis	sible o	peratin	g data				
Colour code	Colour marking	Core (inner)	Reinforce- ment	Cover (outer)	Max. temperature °C	°C	bar	°C	bar	°C	bar	°C	bar	°C	bar
red		EPDM	Polyamide	EPDM	100										
blue		EPDM TW	Polyamide	EPDM	100										
white/red		EPDM beige	Polyamide	EPDM	100										
red		EPDM AF	Polyamide	EPDM	100										
green		CSM	Polyamide	CSM	100										
yellow-grey		NBR	Polyamide	CR	100										
white-grey		NBR beige	Polyamide	CR	100										
grey		CR	Polyamide	CR	90										
red-blue-red		EPDM	Aramid	EPDM	100		_			911.					
blue-blue-blue		EPDM TW	Aramid	EPDM	100		EX		n joints		•		ng to		
white-blue-red		EPDM beige	Aramid	EPDM	100			y	our ope	rating p	paramet	ers.			
orange-blue-orange		EPDM HT	Aramid	EPDM HT	125					ĺ		I			
red-blue-red		EPDM AF	Aramid	EPDM	100										
green-blue-green		CSM	Aramid	CSM	100										
yellow-blue-grey		NBR	Aramid	CR	100										
white-blue-grey		NBR beige	Aramid	CR	100										
grey-blue-grey		CR	Aramid	CR	90										
lilac-blue-lilac		FPM	Aramid	FPM	180										
-	-	Silicone	Aramid	Silicone	180										
-	-	Silicone	Glass fabric	Silicone	200										

Important information

For aggressive media, please see the resistance table (can be requested separately).

The bellows should not be painted or insulated. Please refer to the installation instructions.

++++ We will be happy to send you further information on the individual types and designs. ++++

Application

Type 63 red (EPDM)

For water, sea water, cooling water with glycol or other chemical additives for treating water, saline solutions, weak acids and weak alkali solutions. Unsuitable for aliphatic, aromatic and chlorinated hydrocarbons, oil or oily media.

Type 63 blue (EPDM TW)

Like Type 63 red, but approved for drinking water.

Type 63 white-red (EPDM beige)

Like Type 63 red, but with light-coloured rubber in food-grade.

Type 63 red AF (EPDM AF)

Like Type 63 red, but with abrasion-resistant EPDM rubber compound.

Type 63 green (CSM)

For chemicals, aggressive, chemical wastewater and compressor air containing oil.

Type 63 yellow-grey (NBR)

For oils, fats, gases, diesel fuels, kerosene and crude oil. Not suitable for aromatic and chlorinated hydrocarbons, esters and ketones.

Type 63 white-grey (NBR beige)

Like Type 63 yellow-grey, but with light-coloured internal rubber in food-grade. Not approved for drinking water!

Type 63 grey (CR)

For water, wastewater, swimming pool water, salt water, cooling water with anti-corrosive products containing oil, oil mixtures and compressed air containing oil.

Type 63 red-blue-red (EPDM/aramid)

Like Type 63 red, but with aramid fabric.

Type 63 blue-blue AF (EPDM TW/aramid)

Like Type 63 blue, but with aramid fabric.

Type 63 white-blue-red AF (EPDM beige/aramid)

Like Type 63 white-red, but with aramid fabric.

Type 63 orange-blue-orange AF (EPDM HT/aramid)

Like Type 63 red, but with aramid fabric and for temperatures up to +125 $^{\circ}\text{C}.$

Type 63 red-blue-red AF (EPDM AF/aramid)

Like Type 63 red AF, but with aramid fabric.

Type 63 green-blue-green (CSM/aramid)

Like Type 63 green, but with aramid fabric.

Type 63 yellow-blue-grey (NBR/aramid)

Like Type 63 yellow-grey, but with aramid fabric.

Type 63 white-blue-grey (NBR white/aramid)

Like Type 63 white-grey, but with aramid fabric.

Type 63 grey-blue-grey (CR/aramid)

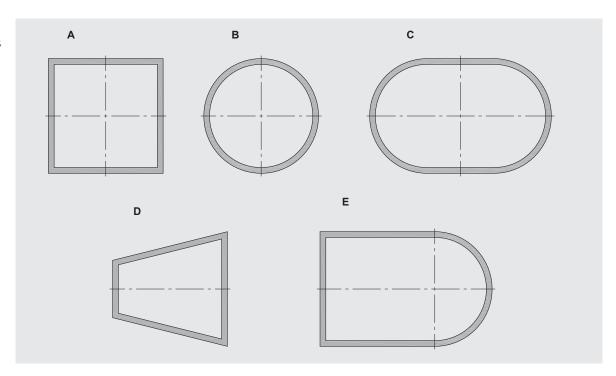
Like Type 63 grey, but with aramid fabric.

Type 63 lilac-blue-lilac (FPM/aramid)

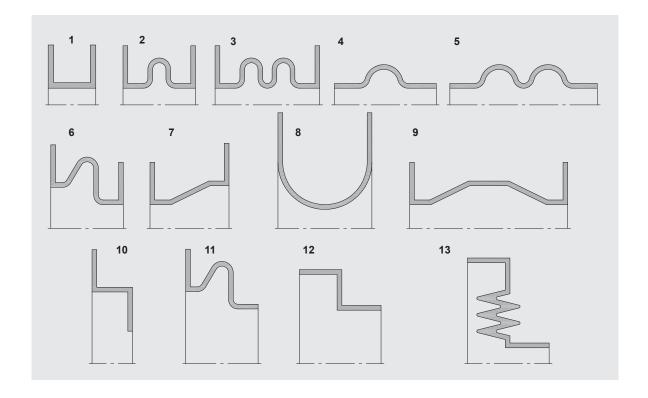
For flue gas desulphurisation systems and bio-diesel. High chemical resistance to benzene, xylene, toluene, aromatic, chlorinated hydrocarbons, mineral acids and fuels with an aromatic content of more than 50 %. For temperatures of up to +180 °C.

Type 63 silicone (silicone/glass fibre or aramid)

Suitable for hot air, acetic acid. Satisfactory resistance to aliphatic engine and gear oils. Also available in foodstuff quality. Excellent resistance to ageing, UV, ozone and weather. Very good radiation resistance. Not for use with steam above 120 °C. No resistance to fuels.


Note!

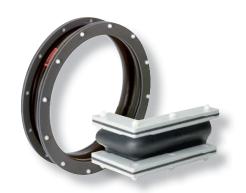
Detailed material descriptions on pages 5 - 7.



Examples of cross-sections

Examples of bellow designs

Important information


Please note the appropriate f xed point constructions and plain bearings in your pipe system, as well as the tolerances as per the FSA Handbook (see the technical appendix on page 118)! For more information please refer to our installation instructions (p. 97 - 116).

++++ We will be happy to send you further information on the individual types and designs. ++++

The type 64 expansion joint is a flexible expansion joint made from pre-formed sheets and is vulcanised or heated into its final form, depending on the material. The dimensions of the expansion joint are based on the construction dimensions and the required movement absorption. There are no standard dimensions for this particular type.

Application areas include stress-free installation of fans and blowers, the bulk handling and materials handling.

Bellow design	The expansion joint bellows comprise a layer of rubber sheeting with a fabric section that overlaps in the area of	Fixing	Both flange connection and cylindrical ends for fixing clamps possible.
	impact and is vulcanised or heated. There are corrugated and uncorrugated versions in order to absorb the prescribed movements.	Accessories	Potential equalisationGuide sleevesDust and splash protection coversEarth cover / sun protection hoods
Pressure resistance	Max. +/-0.4 bar (also dependent on the free installation length)		

Specifications

Bellov	N	Bellow design		Thickness	max. temperature	max. pr	max. pressure		
Colour code	Colour marking	Core (inner)	Rein- Cover forcement (outer)						
					mm	°C	bar	bar	
red		EPDM	Polyamide	EPDM	3.0	120	-0.4	+0.4	Soft
red		EPDM	Polyamide	EPDM	4.0	120	-0.4	+0.4	Standard
lilac*		FPM	Polyamide	FPM	4.0	200	-0.4	+0.4	Standard
yellow		NBR	Polyamide	NBR	4.0	90	-0.4	+0.4	Standard
grey		CR		CR	3.0	90	-0.4	+0.4	Standard

^{*} Only without convolution (bellow profiles type 64-2 and type 64-4).

Application

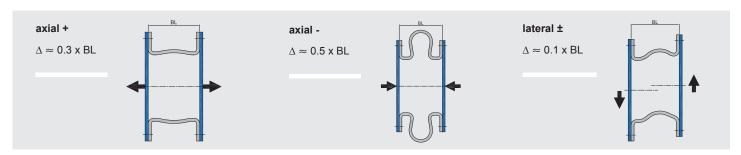
Type 64 red

For hot and cold air and bulk materials. Good resistance to weather, ageing and ozone. Not suitable for oil products of any kind or cooling water with additives containing oil.

Type 64 lilac

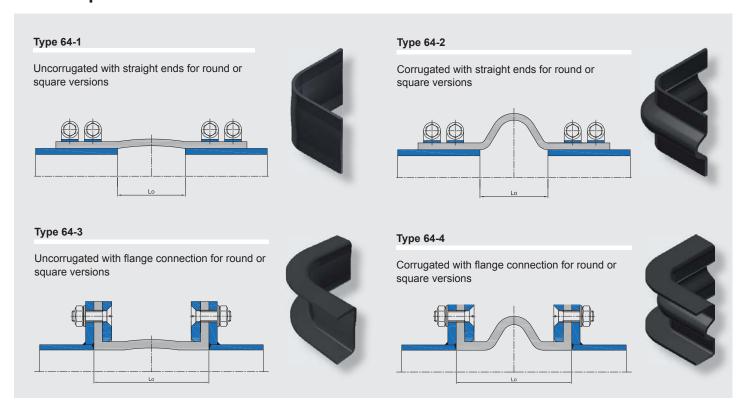
For aggressive exhaust air, flue gas and bulk materials.

Type 64 yellow

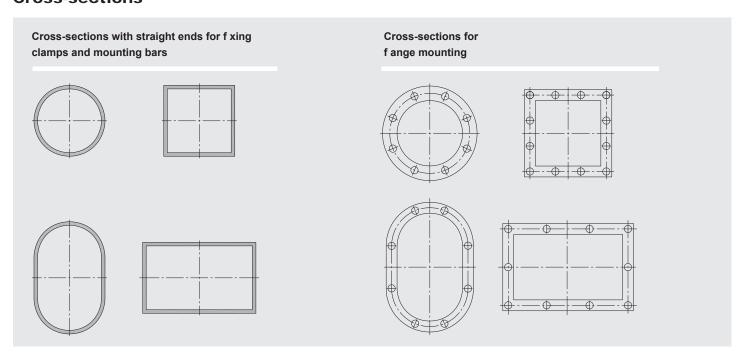

For air containing oils/fats, gases and bulk materials.

Type 64 grey (CR)

For air containing oils/fats, flue gases from treatment plants and bulk materials.


Note!

Detailed material descriptions on pages 5 - 7.



Bellows profiles

Cross-sections

Important information

For aggressive media, please see the resistance table (can be requested separately).

The bellows should not be painted or insulated. Please note the installation instructions and tolerances as per the FSA Handbook (page 118) in the technical appendix!

++++ We will be happy to send you further information on the individual types and designs. ++++

WILLBRANDT Wall Seal Type 65

DN 80 - DN 5000

Type 65 is a freely moulded rubber wall seal that is designed and manufactured according to your specifications and construction dimensions. The connection can be via clamp, flange or a combination of these. There are also a large number of rubber qualities available, which means that you can select a suitable rubber compound for almost any application (see the material descriptions on the following pages).

Type 65 is used in power stations, plant engineering, valve shafts, power houses and pumping stations, where it is used to seal pipes from groundwater, and to compensate building settlement and shear forces.

Bellow design	Reinforced rubber bellow available in corrugated and uncorrugated versions. There is a choice of connection:	Fixing	Both flange connection and cylindrical ends for fixing clamps possible.
	cylindrical ends for fixing clamps and/or internal or external solid rubber flanges to accommodate backing/clamping flanges.		In the case of external pressure (e.g. groundwater) please use a supporting ring.
Pressure resistance	Max. internal pressure: 2.5 bar. In the case of external pressure (e.g. groundwater) please use a supporting ring.	Accessories	Supporting ringPotential equalisationDrainage hoseEarth cover/sun protection hoods

Specifications

Bellov	W		Bellow design		
Colour- code	Colour marking	Core (inner)	Reinforcement	Cover (outer)	Max. temperature °C
red		EPDM	Polyamide	EPDM	100
blue		EPDM TW	Polyamide	EPDM	100
white-red		EPDM beige	Polyamide	EPDM	100
green		CSM	Polyamide	CSM	100
yellow		NBR	Polyamide	CR	90
grey		CR	Polyamide	CR	80

Appliction

Type 65 red (EPDM)

For water, sea water, cooling water with glycol or other chemical additives for treating water, saline solutions, weak acids and weak alkali solutions. Unsuitable for aliphatic, aromatic and chlorinated hydrocarbons, oil or oily media.

Type 65 blue (EPDM TW)

Like Type 65 red, but approved for drinking water.

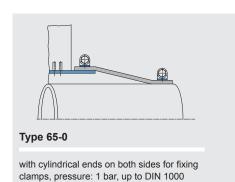
Type 65 white-red (EPDM beige)

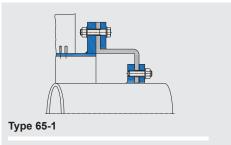
Like Type 65 red, but with rubber in food-grade.

Type 65 green (CSM)

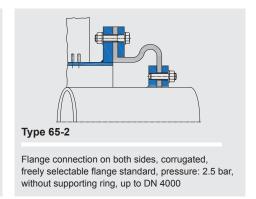
For chemicals, aggressive, chemical wastewater and compressor air containing oil.

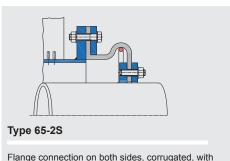
Type 65 yellow (NBR)

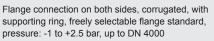

For oils, fats, gases, diesel fuels, kerosene and crude oil. Not suitable for aromatic and chlorinated hydrocarbons, esters and ketones.


Type 65 grey (CR)

For water, wastewater, swimming pool water, salt water, cooling water with anti-corrosive products containing oil, oil mixtures and compressed air containing oil.

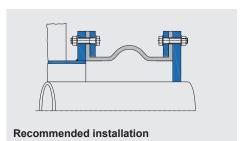



WILLBRANDT Wall Seal Type 65





Flange connection on both sides, freely selectable flange standard, pressure: -0.5 to +2.5 bar, up to DN 4000



in ground with earth protection cover and bellow with inner supporting ring, up to DN 4000

for wall seals with pressures greater than 2.5 bar, we recommend a rubber expansion joint solution up to DN 4000, this makes pressures up to 30 bar possible.

Example of dimensions - Type 65-2

Wall pipe*1	Mediu	m pipe*1	Overall length*2	Bellow		Movement a	bsorption*4	
DN 1 min.	DN 2	PN	BL	WF *3	axial	axial*5	lateral ±	angular ±
			mm	mm²	mm	mm	mm	<u>·</u> ∠°
200	80	PN 10	200	1057	45	17	26	7.7
250	100	PN 10	200	1057	45	26	26	7.7
300	125	PN 10	200	1365	45	26	36	9.8
350	150	PN 10	200	1712	45	26	35	7.4
400	200	PN 10	200	2098	45	26	35	7.4
450	250	PN 10	200	2524	45	26	34	5.9
500	300	PN 10	200	2988	45	26	34	5.9
600	350	PN 10	200	4036	45	26	33	5.0
700	450	PN 10	200	5240	45	26	33	4.2
700	500	PN 10	200	5240	45	26	33	4.2
800	600	PN 10	200	6601	45	26	33	3.7
1000	700	PN 10	200	9794	45	26	32	3.0
1000	750	PN 10	200	9794	45	26	32	3.0
1050	800	PN 10	200	10691	45	26	31	2.5
1200	900	PN 10	200	13616	45	26	31	2.5
1300	1000	PN 10	200	15762	45	26	31	2.1
1500	1100	ANSI B16 150 lbs	200	20525	45	26	31	1.9
1500	1200	PN 6	200	20525	45	26	31	1.9
1700	1300	ANSI B16 150 lbs	200	25917	45	26	30	1.7
1700	1400	PN 6	200	25917	45	26	30	1.7
2000	1500	ANSI B16 150 lbs	200	35181	45	26	30	1.5

^{*1} Catalogue example for a medium pipe according to DIN standards. Other standards (e.g. ANSI, BS, JIS) are also available.

Important information

For aggressive media, please see the resistance table (can be requested separately).

The bellows should not be painted or insulated. Please refer to the installation instructions.

++++ We will be happy to send you further information on the individual types and designs. ++++

^{*2} Other overall lengths possible.

^{*3} WF = effective area

^{*4} It is also possible to provide the wall seal with greater movement by altering the overall length.

^{*5} If an internal supporting ring (Type 65-2S) is used, the axial+ movement is reduced to 9 mm.

WILLBRANDT PTFE Expansion Joint Type 80

DN 25 - DN 600

Type 80 is a 3- or 5-corrugated PTFE expansion joint that is hot-formed under pressure from extruded PTFE tubing. The fibers are executed without interruption. It is characterised by its high level of media resistance and movement absorption.

Type 80 is primarily used in chemical plants to absorb movement, insulate sound and compensate offsets. Its high level of elasticity and low stiffness rates means that it can also be used in pipes made from fragile materials such as glass, graphite or enamel.

Bellow design

Multi-corrugated, pure PTFE bellow with external stainless steel supporting rings from 1.4301. PTFE bead on both sides for steel flanges with integrated tie rods. Standard version: white PTFE, electrically insulating. Special version: black PTFE, electrically conductive.

Special accessories

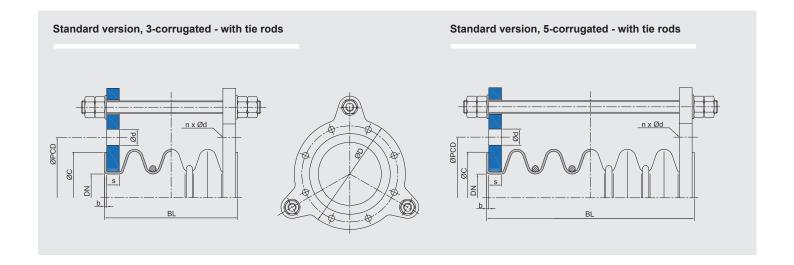
Flange version

version delivered with flange with

version delivered with flange with tie rods and clearance holes (drilled according to DIN PN 10). Other flange versions and materials are possible.

Steel S235JRG2, primed. Standard

Pressure resistance


Max. operating pressure: 10 bar, depending on the temperature

→ see tables

- PTFE guide sleeves
- Potential equalisation
- Flame-resistant protective covers
- Dust and splash protection covers
- Earth cover/sun protection hoods

Conformity

FDA and EG 1935/2004

Important information

No additional seals are required for normal, flat flange connections up to DN 300.

From DN 350 and in the case of glass components or other connecting parts it is necessary to use elastic seals made of TFM with reinforcement (please refer to the required surface pressure).

PTFE expansion joints may not be subject to torsion or vibration.

The bellows should not be painted. Please refer to the installation instructions.

++++ We will be happy to send you further information on the individual types and designs. ++++

WILLBRANDT PTFE Expansion Joint Type 80

Permissible pressure loading at temperature (3-corrugated)

DN					Temp	erature / Pres	ssure				
	20 °C	40 °C	60 °C	80 °C	100 °C	120 °C	140 °C	160 °C	180 °C	200 °C	220 °C
20 - 40	10.00 bar	9.50 bar	8.00 bar	7.50 bar	5.50 bar	5.00 bar	4.50 bar				
50	10.00 bar	8.70 bar	7.70 bar	6.70 bar	5.80 bar	5.20 bar	4.30 bar	4.00 bar	3.50 bar	3.20 bar	3.00 bar
65 - 80	10.00 bar	8.70 bar	7.50 bar	6.50 bar	5.60 bar	4.80 bar	4.10 bar	3.50 bar	2.80 bar	2.50 bar	2.20 bar
100 - 150	8.50 bar	7.50 bar	6.50 bar	5.60 bar	4.80 bar	4.30 bar	3.50 bar	2.80 bar	2.40 bar	2.00 bar	1.60 bar
200 - 250	7.00 bar	6.10 bar	5.30 bar	4.50 bar	3.80 bar	3.30 bar	2.70 bar	2.30 bar	1.70 bar	1.40 bar	1.20 bar
300 - 350	6.00 bar	4.90 bar	4.20 bar	3.40 bar	2.80 bar	2.50 bar	2.10 bar	1.70 bar	1.40 bar	1.20 bar	0.90 bar
400 - 450	4.50 bar	3.60 bar	3.00 bar	2.50 bar	2.20 bar	1.80 bar	1.50 bar	1.30 bar	1.00 bar	0.80 bar	0.80 bar
500 - 600	3.00 bar	2.50 bar	2.00 bar	1.60 bar	2.30 bar	1.10 bar	0.80 bar	0.60 bar	0.50 bar	0.40 bar	0.40 bar
700	1.80 bar	1.70 bar	1.60 bar	1.50 bar	1.30 bar	1.20 bar	1.10 bar	0.90 bar	0.80 bar	0.70 bar	0.60 bar
800 - 900	1.50 bar	1.40 bar	1.30 bar	1.20 bar	1.10 bar	1.00 bar	0.90 bar	0.80 bar	0.60 bar	0.50 bar	0.40 bar
1000 - 1200	1.00 bar	0.90 bar	0.80 bar	0.70 bar	0.65 bar	0.60 bar	0.55 bar	0.50 bar	0.40 bar	0.30 bar	0.20 bar

Permissible pressure loading at temperature (5-corrugated)

DN					Temp	erature / Pre	ssure				
	20 °C	40 °C	60 °C	80 °C	100 °C	120 °C	140 °C	160 °C	180 °C	200 °C	220 °C
20 - 40	7.00 bar	6.00 bar	5.50 bar	5.00 bar	4.50 bar	4.00 bar	3.80 bar	3.10 bar	2.90 bar	2.60 bar	2.30 bar
50	7.00 bar	6.20 bar	5.60 bar	5.10 bar	4.80 bar	4.30 bar	4.00 bar	3.70 bar	3.40 bar	3.00 bar	2.80 bar
65 - 80	4.25 bar	3.75 bar	3.25 bar	2.80 bar	2.40 bar	2.15 bar	1.75 bar	1.40 bar	1.20 bar	1.00 bar	0.80 bar
100 - 150	4.25 bar	3.75 bar	3.25 bar	2.80 bar	2.40 bar	2.15 bar	1.75 bar	1.40 bar	1.20 bar	1.00 bar	0.80 bar
200 - 250	3.50 bar	3.05 bar	2.65 bar	2.25 bar	1.90 bar	1.65 bar	1.35 bar	1.15 bar	0.85 bar	0.70 bar	0.60 bar
300 - 350	3.00 bar	2.45 bar	2.10 bar	1.70 bar	1.40 bar	1.25 bar	1.05 bar	0.85 bar	0.70 bar	0.60 bar	0.45 bar
400 - 450	2.25 bar	1.80 bar	1.50 bar	1.25 bar	1.10 bar	0.90 bar	0.75 bar	0.65 bar	0.50 bar	0.40 bar	0.40 bar
500 - 600	1.50 bar	1.25 bar	1.00 bar	0.80 bar	1.15 bar	0.55 bar	0.40 bar	0.30 bar	0.25 bar	0.20 bar	0.20 bar

Permissible vacuum loading at temperature (3-corrugated)

DN					Temp	erature / Pre	ssure				
	20 °C	40 °C	60 °C	80 °C	100 °C	120 °C	140 °C	160 °C	180 °C	200 °C	220 °C
20 - 40	-1.00 bar	-1.00 bar	-1.00 bar	-1.00 bar	-1.00 bar	-0.96 bar					
25 - 50	-1.00 bar	-1.00 bar	-1.00 bar	-1.00 bar	-0.96 bar	-0.91 bar	-0.85 bar	-0.79 bar	-0.70 bar	-0.63 bar	-
65 - 80	-1.00 bar	-1.00 bar	-1.00 bar	-1.00 bar	-0.96 bar	-0.91 bar	-0.85 bar	-0.79 bar	-0.70 bar	-0.63 bar	-
100 - 150	-1.00 bar	-1.00 bar	-0.96 bar	-0.90 bar	-0.81 bar	-0.74 bar	-0.66 bar	-0.58 bar	-0.46 bar	-0.35 bar	-
200 - 250	-1.00 bar	-0.91 bar	-0.85 bar	-0.79 bar	-0.70 bar	-0.62 bar	-0.53 bar	-0.43 bar	-0.30 bar	-0.20 bar	-
300 - 350	-0.80 bar	-0.74 bar	-0.66 bar	-0.59 bar	-0.49 bar	-0.40 bar	-0.28 bar	-0.18 bar	-	-	-
400 - 450	-0.75 bar	-0.69 bar	-0.61 bar	-0.55 bar	-0.45 bar	-0.32 bar	-0.22 bar	-0.13 bar	-	-	-
500 - 600	-0.69 bar	-0.64 bar	-0.56 bar	-0.49 bar	-0.39 bar	-0.29 bar	-0.18 bar	-	-	-	-
700	-	-	-	-	-	-	-	-	-	-	-
800 - 900	-	-	-	-	-	-	-	-	-	-	-
1000 - 1200	-	-	-	-	-	-	-	-	-	-	-

Note: Type 80 (5-corrugated) is not suitable for vacuum loading.

Important information

Type 80 (5-corrugated) is not suitable for vacuum loading.

For higher pressures, please refer to Type 80 HD.

++++ We will be happy to send you further information on the individual types and designs. ++++

WILLBRANDT PTFE Expansion Joint Type 80

Dimensions - Type 80 (3-corrugated)

DN	Length	Ве	llow			Flange F	PN 10*2			Mover	ment absorp	otion*3	Stiffness	s rates*4	Weight
	BL	b	WF *1	ØD	ØPCD	Ød	n	s	ØС	axial +	axial	lateral ±	axial	lateral	
	mm	mm	mm ²	mm	mm			mm	mm	mm	mm	mm	N/mm	N/mm	kg
20	45	3.0	2400	105	75	M12	4	10	58	10	10	6	18	20	1.9
25	45	3.0	2400	115	85	M12	4	10	68	10	10	6	18	20	1.9
32	50	3.0	3300	140	100	M16	4	10	78	10	10	6	38	25	2.3
40	50	3.0	4000	150	110	M16	4	12	88	15	15	6	44	28	2.9
50	75	3.5	4200	165	125	18	4	15	98	15	15	15	50	45	6.0
65	75	3.0	5500	185	145	18	8	15	118	22	22	17	40	50	7.0
80	100	3.0	9000	200	160	18	8	15	122	25	25	17	40	60	8.0
100	100	3.5	13500	220	180	18	8	15	148	25	25	18	50	90	10.0
125	125	4.0	19000	250	210	18	8	18	174	28	28	18	60	110	12.0
150	150	4.0	29500	285	240	22	8	18	200	28	28	20	100	150	15.0
200	150	4.0	46000	340	295	22	8	20	256	28	28	10	150	180	20.0
250	150	4.0	67000	395	350	22	12	25	303	28	28	8	150	200	35.0
300	150	4.0	94000	445	400	22	12	25	360	30	30	6	150	200	48.0
350	150	4.5	108000	505	460	22	16	25	402	30	30	6	200	270	57.0
400	150	4.0	140000	565	515	26	16	25	453	30	30	5	200	270	70.0
450	150	3.5	180000	615	565	26	20	25	513	30	30	5	250	290	78.0
500	150	4.0	210000	670	620	26	20	25	564	30	30	4	300	350	86.0
600	175	4.0	310000	780	725	30	20	30	658	30	30	2	300	350	125.0
700	190	3.0	441500	895	840	30	24	35	800	35	35	2	350	410	136.0
800	190	3.0	570000	1015	950	33	24	35	905	35	35	2	380	490	146.0
900	215	3.0	712000	1115	1050	33	28	35	1005	35	35	2	400	530	184.0
1000	240	3.0	874000	1230	1160	36	28	35	1110	35	35	2	425	570	214.0
1200	190	3.0	1256100	1455	1380	39	32	35	1330	35	35	2	460	620	275.0

^{*1} WF = effective area

Dimensions - Type 80 (5-corrugated)

		Ве	llow			Flange I	PN 10*2			Mover	nent absorp	otion*3	Stiffness	rates*4	Weight
DN	Overall length BL	b	WF *1	ØD	ØPCD	Ød	n	S	ØС	axial +	axial -	lateral ±	axial	lateral	
	mm	mm	mm²	mm	mm			mm	mm	mm	mm	mm	N/mm	N/mm	kg
20	70	3.0	2400	105	75	M12	4	10	58	15	15	8	11	18	1.9
25	70	3.0	2400	115	85	M12	4	10	68	15	15	8	11	18	1.9
32	75	3.0	3300	140	100	M16	4	10	78	15	15	8	23	25	2.3
40	75	3.0	4000	150	110	M16	4	12	88	20	20	8	27	32	2.9
50	100	3.5	4200	165	125	18	4	15	98	20	20	25	30	35	6.5
65	100	3.0	5500	185	145	18	8	15	118	35	35	30	35	40	7.5
80	125	3.0	9000	200	160	18	8	15	122	40	40	30	35	45	9.0
100	150	3.5	13500	220	180	18	8	15	148	40	40	30	35	60	11.0
125	175	4.0	19000	250	210	18	8	18	174	45	45	32	40	80	13.0
150	225	4.0	29500	285	240	22	8	18	200	45	45	32	80	120	17.0
200	225	4.0	46000	340	295	22	8	20	256	45	45	32	100	150	22.0
250	225	4.0	67000	395	350	22	12	25	303	45	45	15	100	170	37.0
300	225	4.0	94000	445	400	22	12	25	360	50	50	10	120	170	50.0
350	225	4.5	108000	505	460	22	16	25	402	50	50	8	160	250	59.0
400	225	4.0	140000	565	515	26	16	25	453	50	50	8	200	230	72.0
450	225	3.5	180000	615	565	26	20	25	513	50	50	7	200	240	80.0
500	225	4.0	210000	670	620	26	20	25	564	50	50	7	250	300	89.0
600	250	4.0	310000	780	725	30	20	30	658	50	50	6	250	300	130.0

^{*1} WF = effective area

Important information

Please note the appropriate f xed point constructions and plain bearings in your piping system! For more information please refer to our installation instructions. ++++ We will be happy to send you further information on the individual types and designs. ++++

^{*2} Other dimensions (e.g. according to DIN PN 6, 16, ANSI b16,5 150 lbs) are available upon request.

^{*3} The movement absorption values are maximum values and must not occur in combination. Please refer to the movement diagram in the technical appendix.

^{*4}The stiffness rates are valid for 20 °C +/- 25 %. At higher temperatures the stiffness rate can fall by up to 50 %.

^{*2} Other dimensions (e.g. according to DIN PN 6, 16, ANSI b16,5 150 lbs) are available upon request.

^{*3} The movement absorption values are maximum values and must not occur in combination. Please refer to the movement diagram in the technical appendix.
*4The stiffness rate are valid for 20 °C +/- 25 %. At higher temperatures the stiffness rate can fall by up to 50 %.

WILLBRANDT PTFE Expansion Joint Type 80 HD

DN 25 - DN 600

Type 80 is a 2- to 10-corrugated PTFE expansion joint that is hot-formed from wound foil piping under pressure. The material is homogeneous, has no pores and the forming process ensures a redirection of the material fibers without interuption. It is characterised by its high level of pressure resistance, media resistance and movement absorption.

Type 80 HD is primarily used in chemical plants to absorb movement, insulate sound and compensate offsets. Its high level of elasticity and low stiffness rates means that it can also be used in pipes made from fragile materials such as glass, graphite or enamel.

Bellow design

Multi-corrugated, pure PTFE bellow with stainless-steel external stainless-steel supporting rings from 1.4301. PTFE bead on both sides for steel flanges with integrated tie rods. Standard version: white PTFE, electrically insulating. Special version: black PTFE, electrically conductive.

Flange version

Spheroidal graphite iron GGG40, primed. Standard version delivered with flange and tie rods and threaded bolt holes (drilled according to DIN PN 10). Other flange versions and materials are possible.

Pressure resistance

Max. operating pressure: 16 bar (depending on the temperature → see tables)

Special accessories

- PTFE guide sleeves
- Potential equalisation
- Flame-resistant protective covers
- Dust and splash protection covers
- Earth cover/sun protection hoods

Conformity

FDA and EG 1935/2004

Standard version, 3-corrugated - with tie rods Standard version, 5-corrugated - with tie rods

Important information

No additional seals are required for normal, flat flange connections up to DN 300. From DN 350 and in the case of glass components or other connecting parts it is necessary to use elastic seals made of TFM with reinforcement (please refer to the required surface pressure). PTFE expansion joints may not be subject to torsion or vibration. Please refer to the installation instructions.

++++ We will be happy to send you further information on the individual types and designs. ++++

WILLBRANDT PTFE Expansion Joint Type 80 HD

Permissible pressure loading at temperature

Quantity	,					Temp	erature / Pre	essure					
Waves	-40 °C	-20 °C	20 °C	40 °C	60 °C	80 °C	100 °C	120 °C	140 °C	160 °C	180 °C	200 °C	220 °C
2	12.0 bar	14.0 bar	16.0 bar	16.0 bar	15.0 bar	14.1 bar	12.5 bar	10.7 bar	10.0 bar	8.8 bar	7.1 bar	5.5 bar	3.0 bar
3	12.0 bar	14.0 bar	16.0 bar	16.0 bar	15.0 bar	14.1 bar	12.5 bar	10.7 bar	10.0 bar	8.8 bar	7.1 bar	5.5 bar	3.0 bar
4	6.0 bar	8.0 bar	10.0 bar	10.0 bar	9.5 bar	9.0 bar	8.0 bar	6.8 bar	6.1 bar	5.2 bar	4.7 bar	3.5 bar	2.0 bar
5	6.0 bar	8.0 bar	10.0 bar	10.0 bar	9.5 bar	9.0 bar	8.0 bar	6.8 bar	6.1 bar	5.2 bar	4.7 bar	3.5 bar	2.0 bar
6	6.0 bar	8.0 bar	10.0 bar	10.0 bar	9.5 bar	9.0 bar	8.0 bar	6.8 bar	6.1 bar	5.2 bar	4.7 bar	3.5 bar	2.0 bar
7	2.0 bar	4.0 bar	6.0 bar	6.0 bar	5.8 bar	5.3 bar	4.8 bar	4.0 bar	3.7 bar	3.0 bar	2.7 bar	2.0 bar	1.0 bar
8	2.0 bar	4.0 bar	6.0 bar	6.0 bar	5.8 bar	5.3 bar	4.8 bar	4.0 bar	3.7 bar	3.0 bar	2.7 bar	2.0 bar	1.0 bar
9	2.0 bar	4.0 bar	6.0 bar	6.0 bar	5.8 bar	5.3 bar	4.8 bar	4.0 bar	3.7 bar	3.0 bar	2.7 bar	2.0 bar	1.0 bar
10	2.0 bar	4.0 bar	6.0 bar	6.0 bar	5.8 bar	5.3 bar	4.8 bar	4.0 bar	3.7 bar	3.0 bar	2.7 bar	2.0 bar	1.0 bar

A guide sleeve should be used for flow rates of over 3 m/s. This can be made from PTFE for rates of up to 5 m/s. A stainless steel guide sleeve should be used for flow rates of over 5 m/s.

Permissible vacuum loading at temperature

Quantity						Temp	erature / Pre	essure					
Waves	-40 °C	-20 °C	20 °C	40 °C	60 °C	80 °C	100 °C	120 °C	140 °C	160 °C	180 °C	200 °C	220 °C
2	-0.5 bar	-0.8 bar	-1.0 bar	-1.0 bar	-1.0 bar	-1.00 bar	-1.00 bar	-1.0 bar	-0.9 bar	-0.7 bar	-0.4 bar	-0.1 bar	-
3	-0.5 bar	-0.8 bar	-1.0 bar	-1.0 bar	-1.0 bar	-1.00 bar	-1.00 bar	-0.9 bar	-0.7 bar	-0.4 bar	-0.1 bar	-	-
4	-0.5 bar	-0.8 bar	-1.0 bar	-1.0 bar	-0.9 bar	-0.72 bar	-0.65 bar	-0.5 bar	-0.3 bar	-	-	-	-
5	-0.5 bar	-0.8 bar	-1.0 bar	-0.9 bar	-0.8 bar	-0.65 bar	-0.50 bar	-0.3 bar	-	-	-	-	-
6	-	-0.3 bar	-0.3 bar	-0.2 bar	-	-	-	-	-	-	-	-	-
7	-	-0.3 bar	-0.3 bar	-0.2 bar	-	-	-	-	-	-	-	-	-
8	-	-0.3 bar	-0.3 bar	-0.2 bar	-	-	-	-	-	-	-	-	-
9	-	-	-	-	-	-	-	-	-	-	-	-	-
10	-	-	-	-	-	-	-	-	-	-	-	-	-

A guide sleeve should be used for flow rates of over 3 m/s. This can be made from PTFE for rates of up to 5 m/s. A stainless steel guide sleeve should be used for flow rates of over 5 m/s.

Stiffness rates

					DN / Stif	fness ra	tes								
Direction of movement 25	32 40	50	65	80	100	125	150	200	250	300	350	400	450	500	600
axial (N/mm) 21	32 4	2 58	84	111	147	189	235	286	347	413	576	546	597	658	791
lateral (N/mm) 45	68 9	124	124	237	315	405	782	952	1156	1377	1581	1819	1989	2193	2635

The stiffness rates are valid for 20 $^{\circ}$ C +/-50 %. At higher temperatures the stiffness rates can fall by up to 50 %

Factor for wave number

Number of waves									
Factor	1,4	1,0	0,8	0,65	0,55	0,45	0,4	0,35	0,3

Factor for temperatures

Temperature	25 °C	80 °C	120 °C	150 °C
Factor	1,0	0.65	0.5	0.4

Important information

Type 80 (5-corrugated) is not suitable for vacuum loading.
++++ We will be happy to send you further information on the individual types and designs. ++++

WILLBRANDT PTFE Expansion Joint Type 80 HD

Dimensions - Type 80 HD (2-corrugated / 3-corrugated)

DN	Overall	length	В	ellow	I	ı	Flange	PN 10*2					Movement a	absorptio	on*3		Weight
											2	corruga	tions	3	corrugat	ions	3
	2 corru- gations	3 corru- gations	b	WF *1	ØD	ØPCD	Ød	n	s	ØС	axial ±	lateral ±	angular*4 ±°	axial ±	lateral ±	angular*4 ±°	corrugations
	mm	mm	mm	mm ²	mm	mm	mm		mm	mm	mm	mm	∠°	mm	mm	∠°	kg
25	45	55	3.7	1000	115	85	14	4	12	68	9.0	6.0	13.5	9.0	6.0	13.5	2.5
32	55	65	3.8	1430	140	100	18	4	16	78	9.0	6.0	12.0	9.0	6.0	12.0	3.0
40	55	70	4.0	2500	150	110	18	4	16	88	10.5	7.5	12.0	10.5	7.5	12.0	4.0
50	60	70	4.2	3500	165	125	18	4	16	102	10.5	7.5	10.5	10.5	7.5	10.5	6.0
65	60	80	4.4	6000	185	145	18	8	16	118	12.0	9.0	10.5	12.0	9.0	10.5	7.0
80	65	90	4.7	9000	200	160	18	8	17	122	12.0	9.0	10.5	12.0	9.0	10.5	8.0
100	70	95	5.0	12000	220	180	18	8	18	148	13.5	9.0	9.0	13.5	9.0	9.0	10.0
125	75	100	5.2	19500	250	210	18	8	19	174	13.5	9.0	9.0	13.5	9.0	9.0	12.0
150	75	105	5.5	25500	285	240	22	8	20	200	15.0	9.0	7.5	15.0	9.0	7.5	15.0
200	80	110	5.7	42500	340	295	22	8	20	256	15.0	10.5	6.0	15.0	10.5	6.0	20.0
250	90	120	6.0	63000	395	350	22	12	21	303	16.5	10.5	6.0	16.5	10.5	6.0	35.0
300	95	125	6.3	79000	445	400	22	12	22	360	16.5	10.5	4.5	16.5	10.5	4.5	48.0
350	100	125	6.5	116500	505	460	22	16	22	402	18.0	10.5	4.5	18.0	10.5	4.5	57.0
400	100	135	6.8	145000	565	515	26	16	24	453	18.0	10.5	4.5	18.0	10.5	4.5	70.0
450	100	135	7.0	193200	615	565	26	20	27	533	18.0	10.5	4.5	18.0	10.5	4.5	78.0
500	105	140	7.3	222000	670	620	26	20	27	564	19.5	12.0	4.5	19.5	12.0	4.5	86.0
600	105	140	7.6	312000	780	725	30	20	30	658	19.5	12.0	3.0	19.5	12.0	3.0	125.0

^{*1} WF = effective area

Dimensions for Type 80 HD (basic and expansion values 4 to 10 corrugations [max. 10 corrugations])

DN	Overall length	Ве	ellow			Flange I	PN 10*2				Movement a	bsorption per co	orrugation*3
	4 corrugations	b	WF *1	ØD	ØPCD	Ød	n	s	øс	BL per corrugation	axial ±	lateral ±	angular*4 ±°
	mm	mm	mm ²	mm	mm	mm		mm	mm	mm	mm	mm	∠°
25	67	3.7	1000	115	85	14	4.0	12	62	12	3.0	2.0	4.5
32	78	3.8	1430	140	100	18	4.0	16	72	13	3.0	2.0	4.0
40	85	4.0	2500	150	110	18	4.0	16	80	15	3.5	2.5	4.0
50	86	4.2	3500	165	125	18	4.0	16	98	16	3.5	2.5	3.5
65	100	4.4	6000	185	145	18	8.0	16	118	20	4.0	3.0	3.5
80	114	4.7	9000	200	160	18	8.0	17	122	24	4.0	3.0	3.5
100	120	5.0	12000	220	180	18	8.0	18	148	25	4.5	3.0	3.0
125	125	5.2	19500	250	210	18	8.0	19	174	25	4.5	3.0	3.0
150	130	5.5	25500	285	240	22	8.0	20	200	25	5.0	3.0	2.5
200	135	5.7	42500	340	295	22	8.0	20	256	25	5.0	3.5	2.0
250	146	6.0	63000	395	350	22	12.0	21	303	26	5.5	3.5	2.0
300	151	6.3	79000	445	400	22	12.0	22	360	26	5.5	3.5	1.5
350	151	6.5	116500	505	460	22	16.0	22	402	26	6.0	3.5	1.5
400	161	6.8	145000	565	515	26	16.0	24	453	26	6.0	3.5	1.5
450	161	7.0	193200	615	565	26	20.0	27	533	26	6.0	3.5	1.5
500	166	7.3	222000	670	620	26	20.0	27	564	26	5.5	3.0	1.3
600	166	7.6	312000	780	725	30	20.0	30	658	26	5.5	3.0	1.0

^{*1} WF = effective area

Important information

Please note the appropriate fixed point constructions and plain bearings in your piping system! For more information please refer to our installation instructions. ++++ We will be happy to send you further information the individual types and designs. ++++

^{*2} Other dimensions (e.g. according to DIN PN 6, 16, ANSI b16,5 150 lbs) are available upon request.

^{*3} The movement absorption values are maximum values and must not occur in combination.

Please refer to the movement diagram in the technical appendix.

^{*4} Angular movement absorption only possible without tie rods.

^{*2} Other dimensions (e.g. according to DIN PN 6, 16, ANSI b16,5 150 lbs) are available upon request.

^{*3} The movement absorption values are maximum values and must not occur in combination.

Please refer to the movement diagram in the technical appendix.

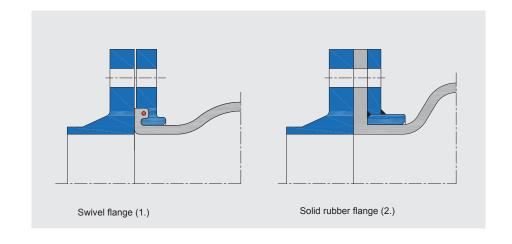
^{*4} Angular movement absorption only possible without tie rods.

Rubber expansion joints should be considered as elastic elements in the pipelines Design A (without tie rods), the rubber expansion joint creates reaction forces in the direction of expansion when subject to pressure (effective area x operating pressure), and reaction forces in the direction of compression when subject to negative pressure. These forces must be absorbed by the closest fixed points, radial plain bearings or the valve flange.

If this is not possible, there are a number of different length limiters that absorb the corresponding reaction forces but do not limit the expansion joint's freedom of movement (with the exception of axial movement absorption). In the case of a design with tie rods, only the stiffness rates from the rubber bellow and the frictional force from the bearings need to be taken into account for the fixed points.

Please refer the following rod examples:

Design A


Rubber expansion joints without tie rods, with swivel flanges or solid rubber flanges, suitable for movement absorption in any direction.

Fixed point load: Reaction force plus

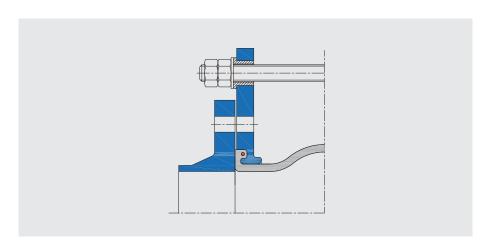
stiffness rates

Production: 1. DN 20 - DN 1000

2. DN 50 - DN 5000

Design B

Rubber expansion joint with length limiter to absorb reaction force. Tie rods in rubber bushings, suitable for sound and vibration absorption and for lateral movement absorption.


Fixed point load: Lateral stiffness rate

plus bearing stiffness rate

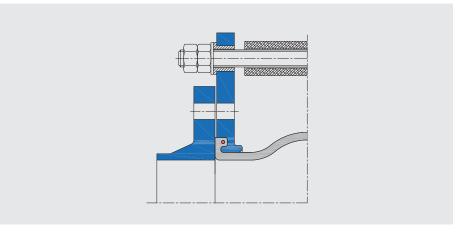
Production: DN 20 - DN 200

Permissible pressure: DN 20 - DN 150: 16 bar

DN 200: 10 bar

Design C

Rubber expansion joint with length limiter for absorbing reaction force, tie rods in rubber bushings, includes thrust limiters for securing bellow. Suitable for sound and vibration absorption and for lateral movement absorption.


Fixed point load: Lateral stiffness rate

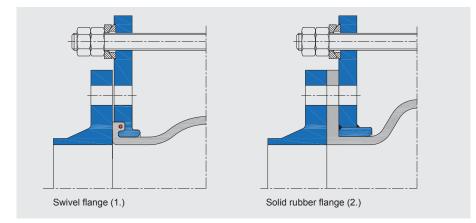
plus bearing stiffness rate

Production: DN 20 - DN 200

Permissible pressure: DN 20 - DN 150: 16 bar

DN 200: 10 bar

Design E


Rubber expansion joint with length limiter for absorbing reaction force, tie rods in PTFE-coated spherical washers and conical sockets, for reduction of frictional force, external. Suitable for lateral movement absorption.

Fixed point load: Lateral stiffness rate plus

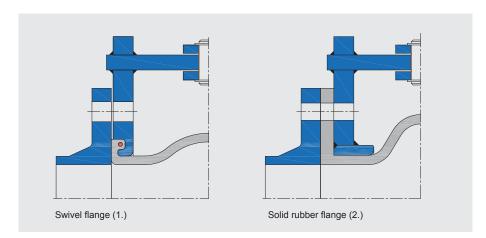
bearing stiffness rate

Production: 1. DN 200 - DN 1000

2. DN 50 - DN 5000

Design F

Rubber expansion joint with hinge for absorbing reaction force, suitable for angular movement absorption in a single plane. Two hinge expansion joints with an intermediate pipe can absorb a large amount of lateral movement. A combination of three (see fitting examples) can create soft corners in order to absorb movement in two planes.


Fixed point load: Angular stiffness torque

and frictional torque from

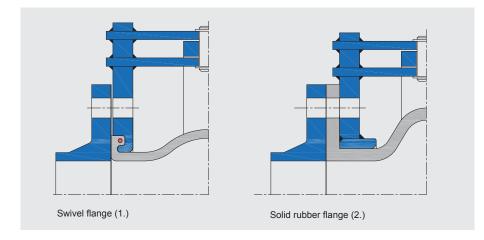
bearings

Production: 1. DN 32 - DN 1000

2. DN 200 - DN 5000

Design G

Rubber expansion joint with cardan shaft for absorbing reaction force, suitable for angular movement absorption in a circular plane. Two cardan shaft expansion joints with an intermediate pipe can absorb high lateral movement in two level. A combination of three (see fitting examples) can create soft corners in order to absorb movement in three planes.


Fixed point load: Angular stiffness torque

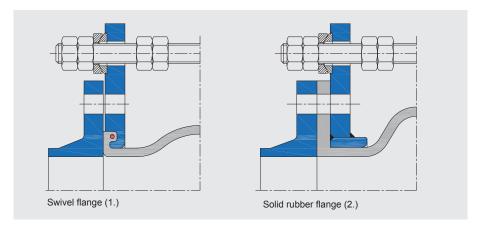
and frictional torque from

bearings

Production: 1. DN 32 - DN 1000

2. DN 200 - DN 5000

Design H


Rubber expansion joint with tie rods for absorbing reaction force, tie rods in PTFE-coated spherical washers and conical sockets, for reduction of frictional force. External, with additional adjustable inner end stop (lock nuts) as thrust limiter. Suitable for high lateral movement absorption.

Fixed point load: Lateral stiffness rates plus

bearing stiffness rates

Production: 1. DN 200 - DN 1000

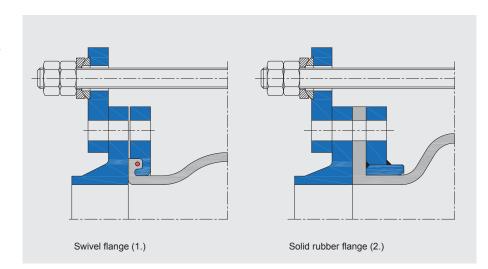
2. DN 50 - DN 5000

Design K

Segment bracing with tie rods from counter flanges to counter flange, as length limiter for absorbing reaction force of expansion joint, tie rods in PTFEcoated spherical washers and conical sockets, for reduction of frictional force, external. Suitable for lateral movement absorption.

Fixed point load: Lateral stiffness rates plus

bearing stiffness rates


Production: 1. DN 200 - DN 1000

2. DN 50 - DN 5000 Note: In the case of large

expansion joints and high

pressure, the undulating load on the rubber flange

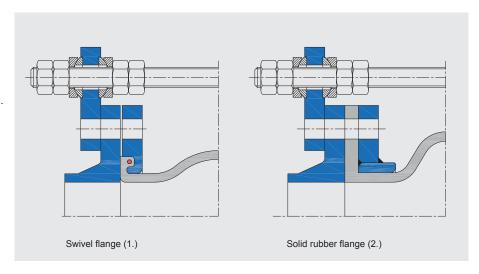
must be taken into account.

Design L

Segment bracing tie rods from counter flange to counter flange, PTFE-coated spherical washers and conical sockets, internal and external, for absorbing thrust and tensile force. Suitable for high lateral movement absorption in pressure and vacuum areas.

Fixed point load: Lateral stiffness rates plus

bearing stiffness rates


1. DN 200 - DN 300 Production:

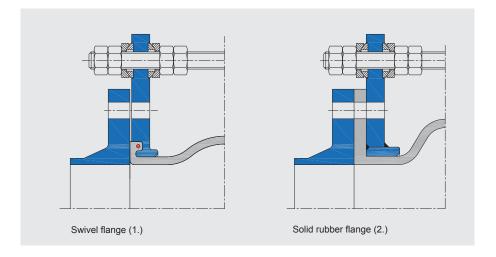
2. DN 50 - DN 5000

Note: In the case of large

expansion joints and high pressure, the undulating load on the rubber flange

must be taken into account.

Design M


Rubber expansion joint, with tie rods, PTFE-coated spherical washers and conical sockets, internal and external, for absorbing thrust and tensile force. Suitable for high lateral movement absorption in pressure and vacuum areas.

Fixed point load: Lateral stiffness rate

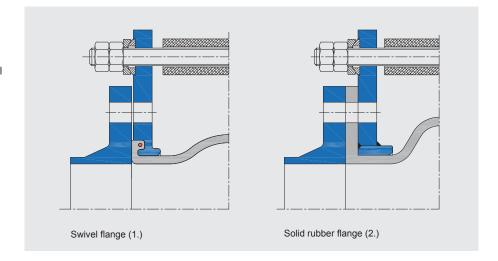
plus bearing stiffness rate

Production: 1. DN 200 - DN 1000

2. DN 50 - DN 5000

Design S

Rubber expansion joint with tie rods to absorb reaction force. Tie rods in PTFE-coated spherical washers and conical sockets, for reducing frictional force, external, includes thrust limiter for securing bellow. Suitable for high lateral movement absorption.

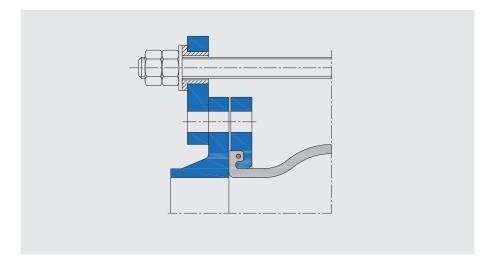

Fixed point load: For external end stops,

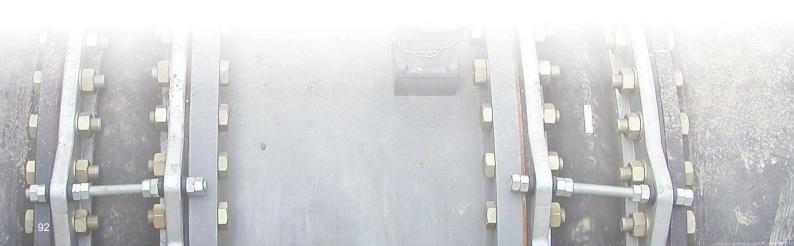
lateral stiffness rates and bearing stiffness rates, full reaction force and axial stiffness rates in the case

of compression.

Production: 1. DN 200 - DN 500

2. DN 50 - DN 500


Design R


Segment bracing with tie rods from counter flanges to counter flange, as length limiter for absorbing reaction force. Tie rods in rubber bushings, suitable for sound and vibration absorption and for lateral movement absorption.

Production: DN 20 - DN 200

Max. operating pressure:

10 bar

WILLBRANDT Supporting Rings

As rubber expansion joints are highly elastic elements, the rubber expansion joint must be equipped for vacuum operation with a corresponding vacuum supporting ring. Different designs are available.

Vacuum supporting spiral

A loose internal vacuum spiral made from 1.4571 stainless steel. The spiral is used for high-corrugated expansion joints up to DN 500 (Type 49) and for low-corrugated expansion joints up to DN 300 (Type 50/51/55).

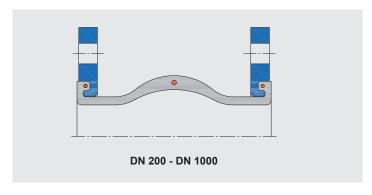
Vacuum supporting ring with lock

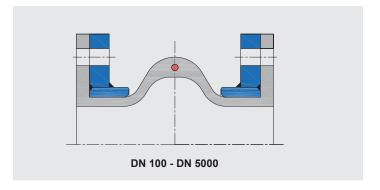
Vacuum supporting ring with lock made from 1.4571, 1.4539 stainless steel or special steel according to customer request. These supporting rings are used for DN 150/500 - DN 5000.

PTFE vacuum supporting ring

PTFE vacuum supporting ring for high chemical loads. However, please note that because the supporting ring is made from 100 % PTFE, the vacuum resistance falls as the temperature increases. In nominal diameters from DN 65 to DN 300, this version is used for low-corrugated expansion joints (our low-corrugated expansion joints up to DN 50 are vacuum-resistant without a supporting ring).

Vacuum supporting rings with guided sleeves


Vacuum supporting ring with buffer plate made from 1.4571, 1.4539 stainless steel or special steel according to customers request. Can be used for DN 150 to DN 350.



Vulcanised vacuum supporting ring

This version is used in applications in which heavily abrasive media may affact the supporting ring or in which media with fibrous materials are transported. It is also used at critical points, at which turbulences could cause fatigue failure or the supporting ring could be washed away.

Please bear in mind that vulcanised vacuum supporting rings significantly reduce the elasticity of the expansion joint and therefore limit the movement and pressure absorption. This version can only be used for handmade expansion joints.

WILLBRANDT Accessories

Earth protection cover

The earth protection cover is necessary if rubber expansion joints are built into the ground and the bellow requires protection from direct contact with earth and sand. The earth protection cover does not restrict the expansion joint's movement, which means that it can absorb subsidence and pipe shifts. The cover is manufactured in two parts, so that it can be mounted after the expansion joint has been completely installed. It is secured to the pipe on one side (preferably not the moving side).

Earth protection cover

Sun protection cover

Sun protection cover

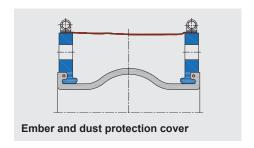
Used wherever heavy solar radiation is expected in order to avoid hardening (ageing). It is manufactured as a single part with % circulation. It can be fastened directly using the flange connection bolts. It should however be noted that the bolts required for fastening the cover are longer than normal, as a second lock nut must also be accommodated. The covers are made from 1.4301 stainless steel; other materials are available upon request.

Flame protection cover

The flame protection cover is used to protect the unit wherever open flames are possible. The main field of application is ships' engine rooms. The cover is delivered as a single unit with a resealable opening. After the expansion joint has been completely installed, it is placed around the expansion joint and counter flange, and closed.

Acid protection cover

The acid protection cover is used for in applications where aggressive media are transported and personal protection is necessary. The cover is primarily made from PTFE and can be provided a window and an outlet valve. The cover is delivered as a single unit with a resealable opening. It will be mounted after the expansion joint has been completely installed. The cover is placed around the expansion joint and closed.


Spacer ring

A spacer ring made of metal is used, when the inner diameter of the sealing surface of the counter flange is greater than dhe diameter of the rubber bellow (please refer to the table for the rubber bellow sealing profile on page 118). This is applicable by using crimped flanges or slip-on flanges. An additional sealing between counter flange and spacer ring is necessary.

Ember and dust protection

This is a simple protective band made from an aluminium coated glass fabric. It is designed to prevent damage to the expansion joint during operation under heavy load, e.g. falling hot ash or embers in steelworks. It is also designed to prevent heavy soiling between the bellow and flange, which can lead to significant abrasion during movement. The dust protection cover is delivered as a sleeve and attached to the flange using hose clamps. All covers are constructed so that the expansion joints' freedom of movement is not limited.

WILLBRANDT Guide Sleeves

Guide sleeve

Rubber expansion joints are elastic pipe elements with integral corrugation. This corrugation means that at high flow rates, turbulences may occur in the expansion joint. This may cause increased loss of pressure and damage the bellow. For media containing solids it is advisable to use a guide sleeve to protect the bellow. For normal liquids, a guide sleeve should be used at a flow rate of 4 m/s and for gases of 20 m/s. We generally recommend using a guide sleeve when transporting solid parts.

The guide sleeves are manufactured in various forms. If the expansion joint only absorbs axial movement, a fitted, angled pipe can be selected. If the expansion joint needs to absorb lateral movement, the guide sleeve must be offset at the opening; it is advisable to use a conical guided sleeve if there is high lateral movement.

For expansion joints with sealing bead and rotatable flanges, the guide sleeves are manufactured as a slide-in sleeves with a collar. For expansion joints with solid flanges, the guide sleeves are provided with a solid flange.

This material is used if high chemical resistance to aggressive media is required.

Important note

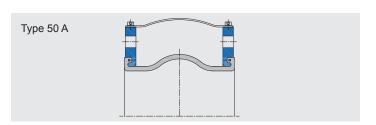
The standard material for guide sleeves is 1.4541 or 1.4571 stainless steel. Guide sleeves can also be made from 1.4539 stainless steel for seawater or hardox for abrasive materials. Other materials are available upon request. Guided sleeves must be fitted with additional seals.

In order to prevent vacuums forming or dust settling between the guide sleeve and the bellow, guide sleeves are manufactured with corresponding relief holes.

- Cylindrical version for axial movement only
- Cylindrical version with conical neck (inlet) for axial and lateral movement
- Telescopic guided sleeve for axial and lateral movement and complete bellow protection
- Conical version for large inlet opening and for axial and lateral movement

We recommend guided sleeves for:

	<u>Liquids</u>	<u>Gases</u>
• Type 49	up from 4 m/s	up from 20 m/s
• Types 39, 50, 51, 53, 55	up from 5 m/s	up from 30 m/s
• Type 40	up from 5 m/s	up from 30 m/s

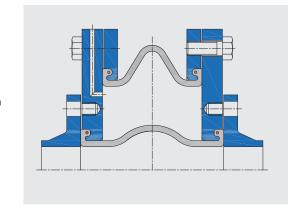

Please note that the standard guide sleeve is designed for axial movement. The max. lateral movement absorption is +/- 5 mm. If higher lateral movement is required, please note that the sleeve is reduced by double the value of the lateral movement in the external diameter of the pipe in order to prevent contact between the bellow and the guide sleeve at maximum load.

WILLBRANDT Potential equalisation

Rubber expansion joints have different electrically conductive resistances. It can be seen in the data sheets, there are expansion joints that are electrically conductive and some are electrically conductive dissipative, while CSM, FPM and PTFE expansion joints (white) are insulating.

Type 40 A

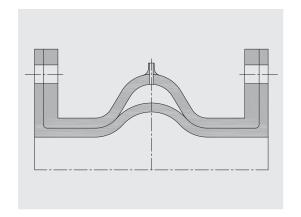
In order to create conductivity for insulating or dissipating expansion joints, we recommend flange-to-flange potential equalisation. This guarantees that the corresponding levels can be tolerated in the piping system and that the system is earthed.



WILLBRANDT Special Designs

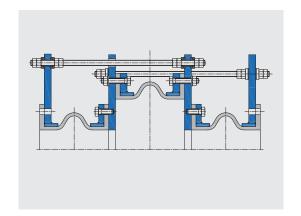
Safety expansion joint

Safety expansion joints are used wherever very aggressive media are transported and human lives or production plants are in danger if the expansion joint fails. A safety expansion joint comprises two pressure-resistant expansion joints selected according to the medium. The bellows are mounted so that there is a sealed intermediate space that can be monitored by manometer, pressure gauges or pressure sensor. This expansion joint can be produced with or without length limiters and for axial, lateral or angular movement absorption.


Both expansion joints are designed for full operating pressure. If the inner expansion joint is damaged, the outer expansion joint cover is still fully operational.

Safety bellow

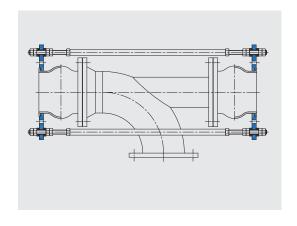
Rubber expansion joints with a safety bellow are used wherever very aggressive media are transported and human lives or production plants are in danger if the expansion joint fails.


The safety bellow is a two-stage bellow with an intermediate layer and an outlet integrated into the external bellow. This outlet can be fitted with a probe, pressure gauge or drainage point so that the appropriate alarm can be sounded in the event of wear to the inner layer.

Axial balanced expansion joint

The axial balanced rubber expansion joint is used if axial movement occurs in the pipe system and cannot be absorbed by fixed points, e.g. turbine nozzle, pump housing and container nozzles.

The principle of this expansion joint is to neutralise any reaction expansion forces that occur as a result of the two small work expansion joints (DN pipes) using a expansion joint that is twice as large. This means it is only necessary to take account into the axial stiffness rate when the nozzles are loaded.



Pressure-balanced expansion joint

This expansion joint is used wherever there is axial movement but high loading is not permitted on the nozzles, e.g. nozzles for turbines or containers, which are very sensitive to axial shear forces.

The function of the pressure-balanced expansion joint is to deflect the medium at a 90° angle between the bellows, while a expansion joint with a blind flange absorbs the reaction force of the expansion joint that absorbs the movement.

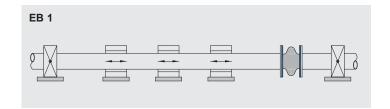
The connecting rod between the two expansion joints should be regarded as a cardan cage that absorbs the reaction force. The stiffness rates from axial and lateral movement will continue to be transmitted to the fixed points or nozzles.

WILLBRANDT rubber expansion joints are available in two ready-to-fit versions with standard connections (according to DIN, ASA, BS, etc.):

Rotatable steel flanges

These flanges should fit precisely and burrfree in the fitting area of the rubber bellow, whereby the sealing surface can protrude about 1 - 10 mm depending on the nominal diametre. The counter flange sealing surfaces can be smooth (Form A) or with sealing (Form B) according to EN 1092 - 1:2001.

Pressure-resistant solid rubber flanges


Flange bellows up to DN 2400 are delivered with one-piece steel swivel flanges (from DN 2500 divided). The counter flanges should have a smooth sealing surface according to EN 1092 - 1:2001 (Form A).

Both types of expansion joint are self-sealing; additional seals are unnecessary.

Fitting example 1 (EB 1)

Compensation of axial expansion with expansion joints without tie rods

The reaction forces of the expansion joint are absorbed by the fixed bearings.

1. Planning instructions

Expansion joints must be arranged in pipes in such a way that regular maintenance and any necessary replacement can take place easily.

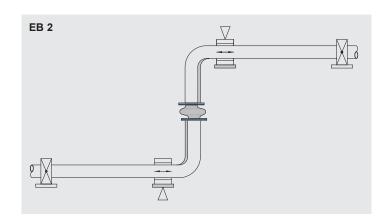
Ensure that the expansion joints do not rub against adjacent components also when expanded to the maximum permissible limits. The expansion joints must also not be exposed to high externally radiated or accumulated heat.

Universal expansion joints (without tie rods) for absorbing axial, lateral and angular movements

For a expansion joint to absorb the axial or lateral movements (expansion or compression) of a pipe, it must be fitted between two fixed points. Plain bearings (PB) must also be included for pipe routing/support.

The reaction forces, stiffness rates and friction forces must be taken into account in the dimensioning of the fixed points and plain bearings.

Reaction force (N) = effective area (mm²) x operating pressure (N/mm²)

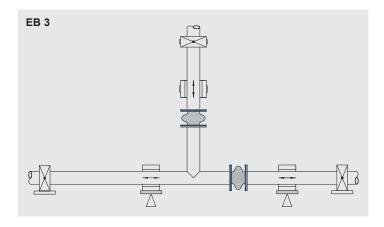

F = A x

(Stiffness rates according to type data sheet)

Fitting example 2 (EB 2)

Compensation of lateral and axial expansion with a expansion joint without tie rods

The reaction forces of the expansion joint are absorbed by the fixed bearings and plain bearings. The plain bearings must be appropriately supported! Stiffness rates must be absorbed by the fixed points.

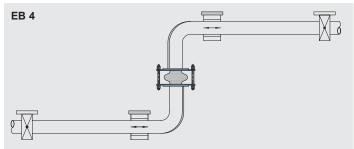


Fitting example 3 (EB 3)

Compensation of lateral and axial expansion with expansion joints without tie rods arranged in a pipe outlet

The reaction forces of the expansion joint are absorbed by the fixed bearings and plain bearings. The plain bearings must be appropriately supported!

Lateral expansion joints (with tie rods) for absorbing lateral movements

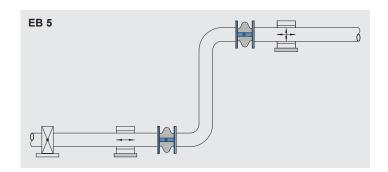

If a expansion joint for absorbing axial movements cannot be fitted between two fixed points, the axial movement must be converted into a lateral movement. This makes it possible to use an expansion joint with tie rods, which neutralises the occurring reaction forces (inside area of the expansion joint x operating pressure). With this arrangement, only appropriate plain bearings may be used for correct initiation of expansion.

A wide range of rubber expansion joints with tie rods can be found in our catalogue.

Fitting example 4 (EB 4)

Compensation of axial expansion by deflection into a lateral movement with expansion joints with tie rods

The stiffness rates of the expansion joint are absorbed by the fixed bearings. The plain bearings serve only for correct initiation of movement in the expansion joint! In contrast to **EB 2**, axial movement of the vertical pipe arm is disregarded.

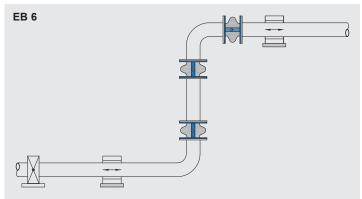

Angular expansion joints (with joint tie rods) for absorbing angular movements

In order to absorb significant axial movements with low stiffness rates, a combination of angular expansion joints with tie rods can be used.

Fitting example 5 (EB 5)

Compensation of axial expansion by deflection to angular movement using expansion joints with tie rods

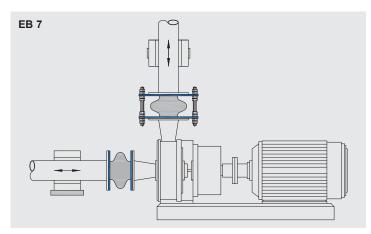
Advantage: significant axial expansion can be absorbed by only two expansion joints. The reaction forces of a expansion joint are absorbed by the joint tie rods. The plain bearings serve only for correct initiation of movement in the expansion joint!



Fitting example 6 (EB 6)

Arrangement of pipe joint expansion joints in three joint systems for compensating expansion in two directions

Advantage: high expansion compensation, low stiffness rates, soft corner. The reaction forces of the expansion joint are absorbed by the joint tie rods. The plain bearings serve only for correct initiation of movement in the expansion joint!

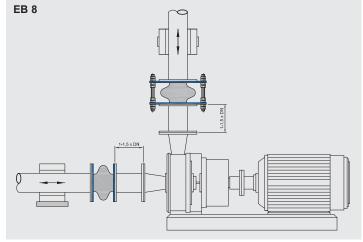


Fitting example 7 (EB 7)

Expansion joints for pump connection (with/without tie rods) for absorbing vibrations

The purpose of using rubber expansion joints on pumps is to prevent the transmission of forces, stresses and vibrations in order to decouple the piping system from the pump.

Expansion joints with tie rods should always be used for arrangement in pressure pipes to prevent the pump support from being overloaded due to the reaction forces. A vacuum supporting ring should be used on the suction side if possible (see type data sheet).

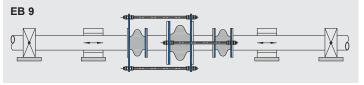


Fitting example 8 (EB 8)

For the transport of abrasive media (liquids containing solids such as water/sand), the expansion joints must not be arranged directly on the pump support (suction/pressure side) as there is a risk of the expansion joints being damaged due to relatively high velocities from turbulence and vortex formation on the pump support.

This applies similarly to elbows and outlets.

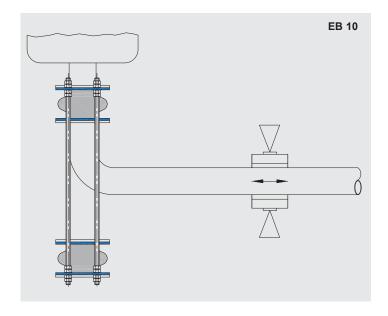
The fitting distance from the pump support to the expansion joint/elbow must be 1 to 1.5 times greater than the nominal diameter. Pump operation against a fully or partly closed gate or flap valve must be avoided. Cavitation must also be avoided as this can quickly damage the expansion joint.



Fitting example 9 (EB 9)

Expansion joints with pressure relief for absorbing axial and lateral movement

Pressure-relieved expansion joints can be used to prevent the transmission of reaction forces resulting from excess or low pressure to adjacent fixed bearings, apparatus or machines.

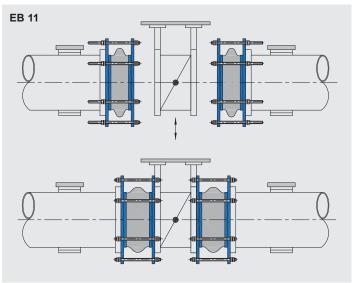

Expansion joints for absorbing axial expansion without the transmission of reaction forces resulting from excess or low pressure to adjacent fixed bearings, apparatus or machines (observe stiffness rates).

Fitting example 10 (EB 10)

Expansion joints for absorbing axial and lateral expansion on an elbow without the transmission of reaction forces resulting from excess or low pressure to adjacent fixed bearings (stiffness rates).

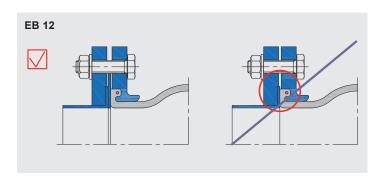
Expansion joints (with tie rods) for fitting/removal

To compensate for fitting inaccuracies or for easy fitting or removal, a expansion joint with tie rods can also be mounted directly on a valve.


Fitting example 11 (EB 11)

Expansion joint with tie rods for fitting/removal

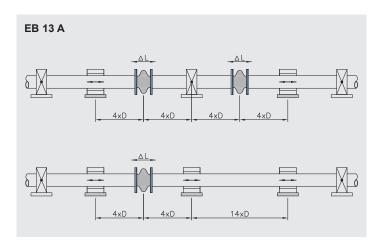
Tie rods prevent the transmission of reaction forces to a connected valve and by loosening the flange connection with the aid of the tie rod flange, the rubber bellow can be compressed to its maximum axial limits to enable removal of the valve.


Warning

This is valid only for expansion joints with pressure-resistant solid rubber flanges. In case of expansion joints with rotatable flanges there is a danger that the bellow sealing bead could spring out of the flange groove. This could lead to lead to the sealing surfaces being crushed during re-fitting (see **EB 16 F**).

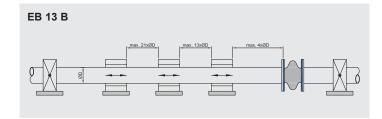
Fitting example 12 (EB 12)

For rubberised pipes or valves, a blank gasket must be used to prevent a rubber-on-rubber seal.



2. Pipe planning

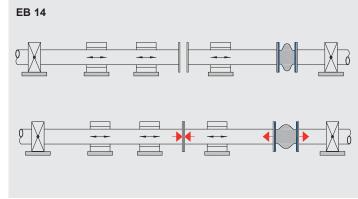
Arrangement of guide bearings

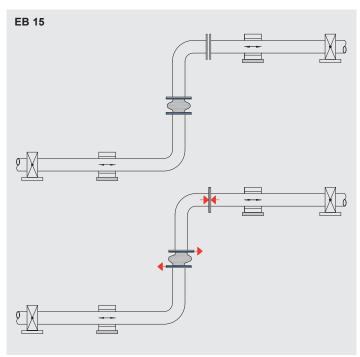

The fixed points and guide bearings must be arranged so that:

- the expansion joint is not subject to loading from the weight of the pipe.
- bending caused by the arrangement of the fixed and floating bearings is avoided.
- suspension in self-aligning bearings is avoided. Plain or roller bearings should be used as a guide bearings.

Spacing of the guide bearings

- The distance between the expansion joint and the first bearing can be max. 4 x the pipe diameter.
- The distance between the first and the second bearing can be max. 14 x the pipe diameter.
- The distance between the remaining pipe bearings can be max. 21 x the pipe diameter. This distance must be reduced if necessary due to the inherent stability of the pipe.




Initial tension of expansion joints

If a expansion joint is fitted with an initial tension greater than 10 mm axially or 5 mm laterally, the expansion joint must be fitted first and then the appropriate initial tension must be generated with the permanently fitted expansion joint at an open point in the pipe. (Fitting example EB 14 + 15)

Reason: An as yet unfitted expansion joint with a higher initial tension will cause the sealing bead to spring out of the groove of the steel flange. This could damage the sealing bead or cause a leak.

For planning purposes, ensure that the pipe can be opened!

3. Safety measures

Excess pressure, temperature rise, vacuum

Protect pipes against impermissible excess pressure, excessive temperature rise and uncontrolled vacuum. The limiting values are shown in the data sheets of our catalogue.

Water hammer and vacuum drop

Draining and venting options are provided to prevent water hammer and vacuum drop.

Resistance

The inner material of the bellow that comes into contact with the medium must be suitable for the medium transported in the pipe (see our resistance list). If the list does not contain a specific medium, we should be provided with appropriate data from the safety data sheet for chemical substances and preparations according to DIN 52900, Clauses 1 to 2.13 in order to allow us to determine whether the inner liner of the expansion joint is suitable.

Flow rate

For high flow rates, it must be clarified whether the expansion joints must be used with or without a guided sleeve in order to prevent wear due to excessive vortex formation.

Vacuum supporting spiral/ring

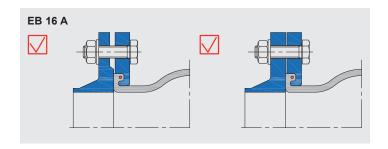
If the expected vacuum is higher than 0.8 bar absolute, a vacuum support spiral or vacuum supporting ring must be provided. These prevent the bellow from collapsing. For use directly downstream of a pump, flap valve or elbow, a check must be made to ensure correct positioning after fitting – see Fitting instructions + Fitting example 17 (EB 17 G)!

External influences

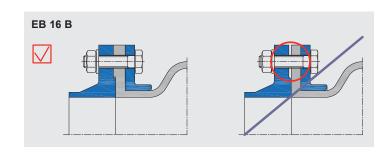
Extreme external influences make it necessary to protect the expansion joints via special measures:

- Ground protection cover: protects against damage to bellows, fouling and earth pressure on buried pipes.
- UV protection cover: protects against UV radiation and influences of weather in regions exposed to extreme sunlight.
- Flame-retardant protective cover: protects against fire up to 800 °C for 30 minutes.

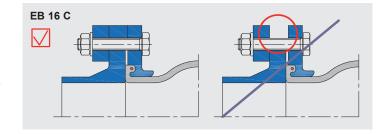
Dangerous media


The expansion joints must be provided with suitable splash protection for pipes used for transporting dangerous or environmentally harmful media.

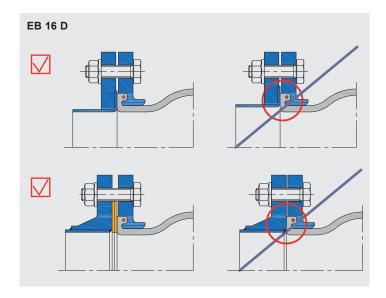
Counter flanges / Flange connection


Counter flanges and flange connections must be as described in **Fitting example 16 (EB 16)** (below) to ensure a reliable sealing and to prevent damage to the rubber expansion joints.

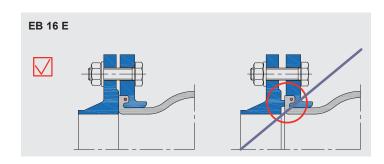
Fitting example 16 (A - E)

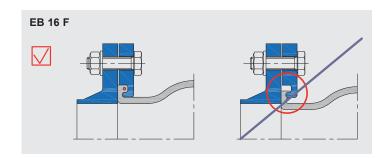

Counter flanges with and without projection according to EN 1092-1:2001 Form A or B must be used for expansion joints with rotatable flanges (EB 16 A). Only smooth counter flanges should be used for expansion joints with solid flanges. Other types are available on request.

If a smooth flange cannot be used for expansion joints with solid rubber flanges, the recess of the counter flange must be compensated with a sealing with an appropriately thick ring or taken into account in rubber flange fabrication.



When using loose flanges with thick bead, the gap above the bolts between both flanges must be filled with an appropriate ring. This stops the loose flange from tilting and thus prevents incorrect contact with the sealing surface!




When using flare flanges and slip-on flanges, ensure that the internal diameter of the sealing surface of the counter flange corresponds to the internal diameter of the bellow. If this is not the case and the internal diameter of the counter flange is larger, a blank metal gasket and an additional sealing must be used!

Counter flanges with a groove or tongue must not be used.

Ensure during fitting that the rubber bead is located correctly in the groove of the expansion joint flange, otherwise the sealing surface may be damaged and leaks can occur!

4. Packaging

- · Check the packaging for external damage.
- · Check the contents against the delivery note or packing list.
- If possible, do not unpack the expansion joints before fitting.
- Only open the packaging with a blunt object.
- Ensure that nails or staples in wooden crates do not come into contact with the rubber bellow.

5. Storage

See DIN 7716 - Guidelines for the storage of rubber parts:

- Rubber expansion joints must be stored without being subject to stress, deformation or kinking.
- Rubber expansion joints with steel flanges must be stored upright on the flanges (otherwise there is a risk of crushing).
- Store in a cool, dry, dust-free and moderately ventilated room.
- Protect rubber parts against draughts and cover if necessary.
 Ozone-generating equipment such as electric motors, fluorescent light sources, etc., must not be used at the place of storage.
- Do not store any solvents, fuels, chemicals or similar together with the expansion joints.

6. Transport

- Leave the parts packed.
- Note "TOP" at the top and "cable or lifting hook".
- Steel backing rings (with bracing) and rubber expansion joint flanges must remain fastened until final fitting to avoid excessive loads on the rubber part!
- Do not use any sharp-edged tools, wire ropes, chains or lifting hooks (risk of damage to rubber).
- Always lift both steel flanges simultaneously. Shackle at both sides or place padded tie-bars through the expansion joint.
- For ground level transportation without means of transport, roll the expansion joint on the flanges.

7. Fitting

Rubber expansion joints are intended for absorbing movements under certain pressure and temperature conditions to be determined in advance. To ensure that the maximum service life is reached, the following must be observed for fitting:

Prior to fitting

- Check the packaging of the rubber expansion joints and after unpacking check the expansion joint itself for damage. Damaged expansion joints must not be fitted.
- Check the pipe run to ensure that it is straight in the area in which
 the expansion joint is to be fitted and that the pipe is limited by
 appropriate fixed points. Only one expansion joint or several
 expansion joints coupled to form a unit may be fitted between two
 fixed points.
- Check the size of the fitting gap. The counter flanges should be fitted in alignment with each other. The maximum deviation between the fitting gap and expansion joint can be +/- 10 mm axially and +/- 5 mm laterally.
- Note: If the aforementioned tolerances cannot be maintained, the procedure is as described in the section "Initial tension of expansion joints" Fitting example 14 - 15 (EB 14 - 15).
- The pipe flanges must not be twisted towards each other when fitting a expansion joint with solid rubber flanges, as the expansion joint will be subject to torsion – this must be avoided as torsion can damage the expansion joint.
- The pipe flanges must be clean, grease-free, smooth, flat and burrfree.
- Ensure that the flange connections are as described in the section "Counter flanges/flange connections" (EB 16 A - F) under "Safety".
- If a expansion joint is to be provided with a guided sleeve, it must be inserted into the expansion joint prior to fitting into the pipe (do not forget the sealing between guided sleeve and counter flange).
- If the use of a vacuum supporting spiral or vacuum supporting ring
 is necessary due to low pressure, these must be fitted in advance.
 In the case of vacuum supporting rings, the section "Vacuum support
 ring" (below) must be observed (EB 17 G)!

IMPORTANT

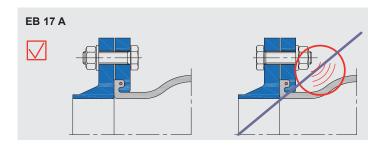
Welding in the vicinity of expansion joints must be avoided. If this cannot be avoided, the expansion joint must be covered with a fireproof and heat-resistant material to protect it against welding heat and flying sparks.

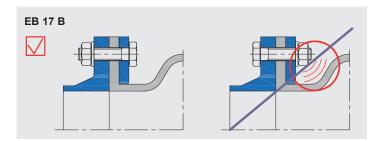
When welding the complete piping system, steel-wire expansion joints can be damaged by stray currents or electrical earth conduction. The anode and cathode of the electric welding connection must always be located on the same line section (and not be separated by the rubber compen-sator!). The rubber bellow must not be painted after fitting in the pipe.

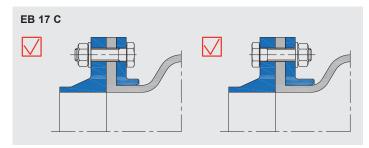
It is also important to note that the expansion joint must not be insulated at temperatures above 50°C, as this will cause the rubber bellow to heat up and harden as a result of the accumulated heat.

Fitting a expansion joint with flange connection

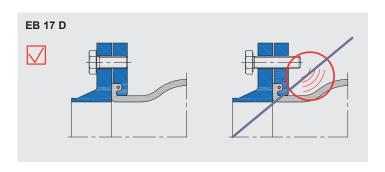
- Centring mandrels, a rubber hammer and a torque wrench are required for fitting. Do not use any sharp-edged tools!
- Carefully insert the expansion joint into the fitting gap. Take care not to damage the sealing surfaces.
- No additional seals are required. The rubber sealing bead or rubber flange seals directly against the pipe flange.

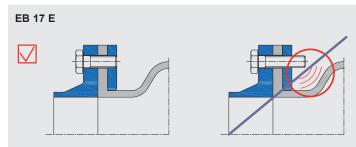

Warning: Exceptions for rubberised pipe flanges, valves or blank gaskets - see corresponding section above!


- Fix the expansion joint at both flanges using at least two bolts or threaded rods. If necessary, the lifting device can be detached/ removed.
- When fitting expansion joints with tie rods, ensure that the tie rods
 are loosened so that the expansion joint is able to adjust to the fitting
 gap when tightened. Readjustment of the tie rods takes place after
 fitting the expansion joint see page 17 "Supplementary installation
 instructions for expansion joints with length limiters".
- The remaining fixing bolts can now be inserted and tightened hand-tight.
- For the bolted flange connection, bolts with the strength class 8.8 should be used.
- Do not use a U-washer on the expansion joint flange.


The following must be noted when inserting the bolts:

- Refer to tightening torque (Tables 1, 2 and 3, pages 114 115)
- For expansion joints with through holes, all bolts must be inserted with the bolt head towards the bellow to prevent damage to the bellow under pressure.





Exception: If the expansion joint has a long collar (supporting shoulder), the bolt can also be inserted the other way round - however the bolt must not be longer than the collar!

 For expansion joints with tapped holes in the flange, the bolts should be flush towards the bellow side with the flange, as protruding bolts are liable to damage the bellow under pressure.

The bolted flange connections must be tightened as follows:

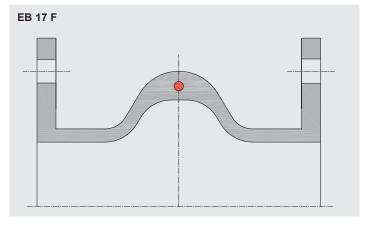
Step 1:

- Tighten all bolts by hand
- Apply torque evenly according to Step 1 crosswise
- Check gap width on outer edge of flange
- Settling time ≥ 30 minutes

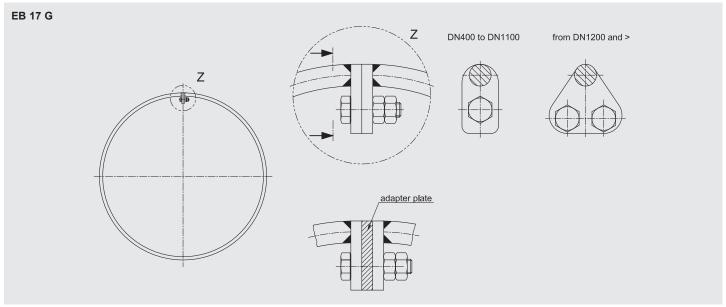
Step 2:

- Tighten all bolts crosswise according to Step 2
- Check gap width

Step 3:


- Apply final torque according to Step 3 in two passes crosswise.
- The bolts do not require further tightening as this would ultimately damage the sealing surface.
- Throughout the entire fitting process, ensure that the sealing bead does not tilt. The protruding sealing surface should be compressed evenly on all sides.
- When fitting silicone rubber expansion joints, the specified tightening torques must be reduced by 30%.
- If a leak should occur during the subsequent pressure test, the bolts
 must be tightened with the torque according to Step 3. If the bolted
 flange connection is still leaky, the tightening torque must be
 increased slightly. Before retightening the bolts, the pressure in the
 expansion joint must be reduced.
- Throughout the entire fitting process, ensure that the expansion joint is not over-expanded or crushed.

Vacuum supporting ring


When fitting vacuum supporting rings arranged directly downstream of a pump, flap valve or elbow the vacuum supporting rings must be checked for correct positioning after fitting as follows (**EB 17 G**):

- Firm seating (max. 10 15 mm clearance between bellow and ring on one side)
- If necessary, adapter plates should be used to obtain the permissible seat clearance (EB 17 G).
- The connection lock should always be in the lower flow area (6°°).
- At high flow rates, a check should be made to determine whether a expansion joint with vulcanised supporting ring should be used in order to avoid fatigue failures due to strong turbulence (EB 17 F).
- After fitting, check that the hexagon bolts and nuts are securely locked to prevent loosening.

8. Final fitting check

- Check the expansion joints on all sides for any visible damage and in particular clean the gap between the steel swivel flange and rubber bellow (remove foreign bodies, sand, etc.).
- After being fitted, the expansion joints should be provided with suitable protection against damage; this protection must only be removed directly prior to commissioning.
- The rubber parts must not be painted. Solvents and chemicals affect the surface and damage the bellow.
- The rubber expansion joints must not be insulated as this can cause the bellow to overheat and dry out and will ultimately lead to damage to the bellow.
- The best results are obtained when the expansion joint is able to function stress-free under operating conditions (initial tension must be taken into account when fitting).
- For expansion joints with tie rods, check the tie rods.
 It should be possible to tighten them hand-tight. The lock nuts must be tightened.
- If the installation situation allows, check that any supporting spirals/ rings are correctly seated and locked.

9. Measures prior to pressure test and commissioning

- Remove the protective covers and clean the expansion joint.
- Check the expansion joint for damage.
- Check that all supports, fixed and plain bearings are fitted and functional.
- Check the tie rods for even loading and if necessary adjust them to the prevailing conditions.

Insert the expansion joint and tighten using two wrenches as follows:

DN 20/25

The front threaded part must be used as a counter support and the sleeve nut must be tightened (to avoid torsion on the bellow).

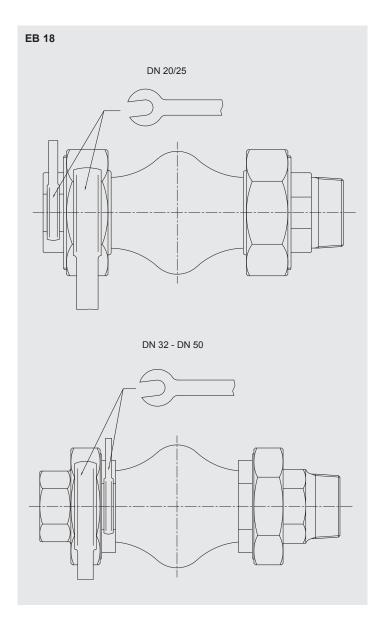
DN 32 - 50

The rear threaded part must be used as a counter support and the sleeve nut tightened (to avoid torsion on the bellow)

10. Pressure test

The rubber expansion joint is not a proper pressure vessel, but it is classified according to the Pressure Equipment Directive as a "pipe accessory" (pipe component). When fitting the expansion joint in piping, the sealing does not take place via a separate seal, but directly on the sealing surface of the integrated rubber bellow.

A one hundred per cent pressure test of the rubber expansion joint at the manufacturer can adversely influence the integrated rubber sealing surface. Pressure testing of the rubber expansion joints at the manufacturer therefore takes place only at the special request of the customer and with the utmost care.


The pressure test normally takes place only after the rubber expansion joints have been fully installed in the piping system. All of the instructions contained in these fitting instructions should be observed prior to the pressure test.

If leaks should occur in the area of the flange connection during the pressure test, the bolted flange connection must be retightened according to with the tightening table (Step 3).

11. Supplementary assembly and fittings instructions for Type 46

Type 46 rubber expansion joints should be fitted stress-free. The bolted connections should always be made using two wrenches to avoid torsion on the expansion joint (EB 18).

Mount the bolting parts on the pipe and check the fitting gap!
 The fitting gap should be the same length as the expansion joint bellow (e.g. 130 mm +/- 5 mm).

All other fitting positions are as described in our main fitting instructions.

The tightening torque for all types is 100 Nm.

12. Supplementary assembly and fittings instructions for Type 49

There are various **bolt packs (SU)** for connecting Type 49 expansion joints to the pipe so that the bolt length is flush with the expansion joint bellow when using DIN flanges.

When fitting, ensure that the surfaces that contact the rubber bellow are free of burrs. Use the U-washers to correct the length (place under the bolt head).

Corresponding bo	olt pack (DIN)		
	PN 6	PN 10	PN 16
DN 32	SU 1	SU 2	SU 2
DN 40	SU 1	SU 2	SU 2
DN 50	SU 1	SU 3	SU 3
DN 65	SU 1	SU 5	SU 5
DN 80	SU 4	SU 7	SU 7
DN 100	SU 4	SU 7	SU 7
DN 125	SU 5	SU 6	SU 6
DN 150	SU 6	SU 10	SU 10
DN 175	SU 6	SU 10	SU 10
DN 200	SU 8	SU 10	SU 11
DN 250	SU 9	SU 13	SU 17
DN 300	SU 11	SU 14	SU 18
DN 350	SU 12	SU 15	SU 19
DN 400	SU 15	SU 19	SU 21
DN 500	SU 16	SU 20	SU 22

Contents					
Bolt pack	kg	Qty	Bolts ISO 4017	Qty	U-washers Ø
SU 1	0,35	8	M 12X30	8	13
SU 2	0,62	8	M 16X30	8	17
SU 3	0,67	8	M 16X35	8	17
SU 4	0,68	8	M 16X35	16	17
SU 5	1,4	16	M 16X35	16	17
SU 6	1,5	16	M 16X40	16	17
SU 7	1,55	16	M 16X40	32	17
SU 8	2,6	16	M 16X45	16	17
SU 9	2,4	24	M 16X45	48	17
SU 10	2,7	16	M 20X45	16	21
SU 11	4,1	24	M 20X45	24	21
SU 12	4,2	24	M 20X45	48	21
SU 13	4,3	24	M 20X50	48	21
SU 14	4,2	24	M 20X50	24	21
SU 15	5,8	32	M 20X50	64	21
SU 16	7,3	40	M 20X50	80	21
SU 17	6,7	24	M 24X50	48	25
SU 18	6,6	24	M 24X50	24	25
SU 19	9,3	32	M 24X55	64	25
SU 20	11,7	40	M 24X55	80	25
SU 21	13,5	32	M 27X60	64	28
SU 22	22,0	40	M 30X60	80	31

13. Supplementary assembly and fittings instructions for Type 60 - WRG

- The Type 60 WRG rubber-metal pipe connector must be fitted stress-free.
- The fitting gap must be 70 mm.
- The pipe connector must not be subject to tension, torsion or bending.
- No additional seals are required.
- Only hexagon head bolts according to DIN 933 with a washer should be used (note bolt length - see table below).
- The bolt tightening torque is 30 Nm.

All other fitting positions are as described in our main fitting instructions.

Bolt size for	Flange PN 6	Flange PN 10
DN 20	4 x M10 x 25	4 x M12 x 30
DN 25	4 x M10 x 25	4 x M12 x 30
DN 32	4 x M12 x 30	4 x M16 x 30
DN 40	4 x M12 x 30	4 x M16 x 30
DN 50	4 x M12 x 30	4 x M16 x 30
DN 65	4 x M12 x 30	4 x M16 x 30
DN 80	4 x M16 x 35	8 x M16 x 35
DN 100	4 x M16 x 35	8 x M16 x 35
DN 125	8 x M16 x 35	8 x M16 x 40
DN 150	8 x M16 x 35	8 x M20 x 40
DN 200	-	8 x M20 x 45

14. Supplementary assembly and fittings instructions for Type 61

- Type 61 is fitted as part of the pipe installation. Installation in the fitting gap is difficult in the case of very large nominal diameters.
- The pipe ends must be long enough to reach the beginning of the shaft on both sides.
- Only use wide GBS-clamps for fixing the expansion joint (min. 20 x 1 mm).
- At an operating pressure of up to 2 bar, one clamp is adequate per side. Above 2 bar, two clamps should be used.

All other fitting positions are as described in our main fitting instructions.

15. Supplementary assembly and fittings instructions for Type 64

The expansion joint must not be fitted before completion of all work on the pipes and flanges and mounting of all anchors and supports. This is intended to prevent the expansion joint from being damaged by welding sparks, sharp-edged objects, etc.

As Type 64 expansion joints are made from extremely flexible material, their durability is dependent on careful and correct fitting.

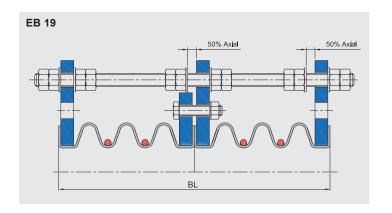
- · Avoid sharp edges and folds.
- Ducting flanges, swivel flanges or other steel parts included in the scope of delivery should be checked and correspond to the drawings.
 The bolt holes in each flange must be symmetrical.
- It is advisable to use a support plate or an inner frame when lifting the expansion joint. Preferably, the expansion joint should be pre-assembled with loose flanges and an internal sleeve (if included in the scope of delivery) on the ground before lifting.

All other fitting positions are as described in our main fitting instructions.

Tightening torque for Type 64

Material	Swivel flange 40x10/M10	es / bolts 50x10/M12	60x10/M12	60x12/M16
EPDM	60 Nm	80 Nm	80 Nm	80 Nm
FPM	80 Nm	80 Nm	80 Nm	

Warning: Refer to the tightening scheme!


16. Supplementary assembly and fittings instructions for Type 80

- The expansion joints are delivered with protective covers. These
 covers may only be removed directly prior to fitting. If these covers
 need to be removed in advance for the purpose of inspection, they
 must be screwed back into place.
- Welding, soldering and brazing on the PTFE bellow is not permitted as the bellow could be damaged and highly toxic gases could develop.
- It is not necessary to use seals between PTFE/PTFE sealing surfaces. It is advisable to use a 5-mm-thick PTFE sealing for connections to glass, enamel and other components.
- The flange connection bolts must be tightened according to the torque table below.
- The limiting bolts (tie rods) must be adjusted to the maximum permissible expansion after fitting the expansion joint. The limiting bolts must not be removed.
- In the course of commissioning, the flange connections should be retightened with the specified torque after reaching operating temperature.
- If leaks occur, the flange connections must be inspected to ensure that the flanges are parallel and for fouling or damage to the sealing surfaces.

Minor indentations or damage can be removed with emery cloth.

When coupling Type 80 expansion joints, ensure that a corresponding blank gasket is used between the bellows that are being coupled in order to avoid a double PTFE effect.

When adjusting the continuous tie rods, ensure that the central flange is appropriately fixed with lock nuts on the right and left of the flange pair in order to avoid lateral buckling. The play between nuts and flange should be a maximum of 2 mm (in order to leave clearance for lateral movement). In the case of the outer flanges, the hexagon bolts should be arranged on the inside and outside so as to accommodate the desired axial expansion. During this process, ensure that the axial expansion is equally distributed between the two expansion joints. Please refer to EB 19.

17. Supplementary installation instructions for expansion joints with length limiters

In order to correctly install rubber expansion joints with length limiters, please note the following points:

- Check gap measurements for permissible installation tolerances and adjust, if necessary.
- Loosen tie rod bolts so that stress-free installation is possible.
- Insert the expansion joint and screw into place according to the tightening torque plan. Note the tightening torque for the appropriate type.
- Fix tie rods to stop (without play) so that they can still be turned by hand. Then tighten the tie rods to the stipulated tightening torque using the relevant flange-side hexagon bolts.

18. Maintenance and monitoring

- The flange connection tightening torque must be checked once prior to final commissioning.
- First inspection 1 week after commissioning.
 Further inspections after 1, 4 and 12 months; then annually.

The following must be checked:

- External damage to rubber bellow, flange and tie rods
- Deformations of the rubber flange between the bolts (displacement of flange surfaces)
- Changes to the rubber bellow (bubbles, brittleness, cracks, hairline cracks
- Impermissible displacement and misalignment of the tie rods
- Corrosion and wear on the entire component
- The expansion joints can be cleaned with a weak soap solution and clear water. Do not use sharp-edged objects, wire brushes or emery cloth.

19. Maintenance and inspection instructions

After installing the rubber expansion joints according to our installation instructions, the following points should be included in the annual inspection:

 Check the installation position of the rubber expansion joint, i.e. the permissible combined axial and lateral expansion should not be exceeded.

Reason: Pipe movement due to loose fixed points or plain bearings.

- Check for external damage to rubber and tie rods.
- Assess corrosion and wear on the entire component.
- · Check rubber bellow for blistering.

Reason: Minor damage to the inner bellow can lead to media reaching the cover via the reinforcement, which causes minor blistering.

• Check the bellow behind the swivel flanges for circumferential cracks.

Reason: Overexpansion can lead to cracks on the outer cover at the end of the continuous reinforcement. If these cracks are deeper than 2 mm, we recommend replacing the bellow. Check the surface of the bellow for hairline cracks.

Reason: External influences and incorrect media cause the cover to harden

Assessment: If these surface cracks are only superficial, they must be recorded (surface photo).

The cracks should be re-assessed during the next annual inspection. If there are only minor changes, maintenance can take place at the time of the next inspection. If the cracks are deeper than 1.5 mm, the cover must be replaced.

 Check the bellow for hardening. This can be achieved using an impression test, e.g. by pressing the edge of a coin into the rubber.
 If the rubber is elastic, the notch will disappear; if it is hard, the notch will remain

A conclusive assessment using a Shore hardness test must be made to determine whether a expansion joint must be quickly replaced. The hardness should not exceed 80 to 84 Shore.

Normally, rubber expansion joints are maintenance-free - in cooling water systems and water operation a service life of 15 to 20 years can be expected. In oil and fuel plants, expansion joints should be replaced after 5 years and in chemical plants they should be replaced after 10 years.

If in doubt, we recommend that you send us photos of the relevant expansion joints for better assessment. Our expert staff will make an assessment.

20. Electrical conductivity

In case of rubber expansion joints, ensure that the expansion joints are either insulated, conduct electricity or have surface conductivity.

The values mentioned in our catalogue for the different qualities of rubber expansion joint relate to the inner, i.e. the rubber surface in contact with media. The following should be observed:

Range I

Electrical conductor electrical resistance < 10⁶ Ohm cm

Range II

Antistatic - electrical resistance value: 106 to 109 Ohm cm

Range III

Electrical insulator - electrical resistance: Ohm cm > 109

Generally speaking, the harder the mix, the greater the conductivity. The reason for this is that the increased amount of soot in the mix reduces the resistance.

21. Flow rates

In case of rubber expansion joints and PTFE expansion joints, ensure that the maximum permissible flow velocities without guided sleeves are not exceeded. Permissible flow rate of many media not containing solids:

- for rubber expansion joints: 4.5 m/s
- for rubber expansion joints with PTFE coating: 3 m/s

If the rates are higher rates, we recommend using a guided sleeve. In case of media containing solids, we generally recommend a guided sleeve due to wear.

When using guided sleeves, it should be noted that standard guided sleeves are designed for ± 5 mm laterally. If higher lateral measurements are required, the size of the guided sleeves should be reduced according to double the value of the lateral guidance.

Before testing pressure: Check torque in one pass crosswise using the final value (Step 3).

Subsequent inspections: Refer to maintenance instructions. Only tighten flange bolts until final value (Step 3).

Flange tightening torque

The tightening torques for flange bolts provided in the table offer a specific surface pressure based on the entire sealing surface for solid flanges or the sealing bead in the case of rotating flanges.

In case of solid flanges, temporary settling process in the rubber flange area mean that under operating conditions the surface pressure falls to around 50% of the final value (Step III). The residual effective gripping and sealing force is completely sufficient and suitable for test pressures up to 1.5 times the operating pressure.

Tensile stresses from over-expansion of the expansion joint are not permissible.

22. Application of tightening torque

Fitting instructions

Tools

Centring mandrels, rubber hammer and torque wrench. All tools must be burr-free (danger of damage to rubber parts).

The maximum tightening torques given must not Warning:

> be substantially exceeded, since excessive loading causes a constant increase in the flow in the elastomer and leads to destruction (crushing).

Tightening torque: Rough estimation of the final tightening torque for

special flanges:

Use Strength Class 8.8 flange bolts

(Non-post-treated, lubricated bolts)

Step I a) Insert all bolts and tighten evenly by hand.

b) Apply torque evenly according to Step 1 in

three passes crosswise.

Check gap width on outer edge of flange.

c) Settling time ≥ 30 minutes

d) Tighten all bolts in three passes or to 2/3 of the final torque crosswise. Check gap width.

e) Settling time ≥ 60 minutes

Apply final torque in two passes crosswise.

NO FURTHER TIGHTENING!

Rule of thumb: $MA = 0.2 \times FVM \times d2 (Nm)$

MA = Bolt tightening torque d2 = Thread flank diameter

FVM = Initial tension at fitting = KA* x FKL KA = Tightening factor ~ 1.4 lubricated,

against a firm support

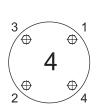
K = Experimental value = 1.0 selected flow process in rubber flange

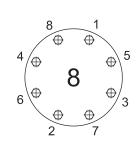
FKL = Clamping force, contact pressure 7 N/mm² for total flange surface for Type 40

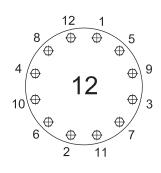
Step II

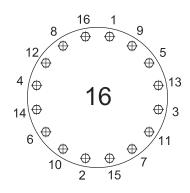
Step III

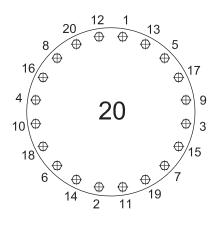
Note


The bolt tightening torques are valid only for steel flange connections and expansion joints with rubber-flange or profile seals. Separate tightening torques should be observed for GRP flange connections.


Important instructions for removing rubber expansion joints When removing rubber expansion joints for revisions or conversion, ensure that the bolts are loosened crosswise, as during fitting.


Reason


When rubber-flange or profile seals are bolted, a high level of spring force is stored in the rubber elements. When they are loosened, the rubber element acts like a spring. As soon as the bolts are loosened, the rubber-flange/profile sealing attempts to creep into the free space, which can cause damage to the sealing and render the expansion joint unusable.


Tightening torque plan

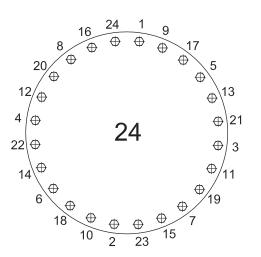


Table 1 Flange bolt tightening torques for Types 40, 42, 58 and 59

DN	Step 1					Ste	p 2			Ste	р 3	
	PN 6	PN 10	PN 16	ASA 150	PN 6	PN 10	PN 16	ASA 150	PN 6	PN 10	PN 16	ASA 150
	Nm	Nm	Nm	Nm	Nm	Nm	Nm	Nm	Nm	Nm	Nm	Nm
200	34	54	37	57	67	107	74	114	100	160	110	170
250	30	44	57	50	61	87	114	101	90	130	170	150
300	47	50	70	74	94	101	141	147	140	150	210	220
350	57	47	64	97	114	94	127	194	170	140	190	290
400	47	67	87	87	94	134	174	174	140	200	260	260
450	54	60	84	100	107	121	167	201	160	180	250	300
500	47	67	117	94	94	134	234	187	140	200	350	280
550				114				227				340
600	70	97	174	134	141	194	347	267	210	290	520	400
650				124				247				370
700	67	104	134	117	134	207	267	234	200	310	400	350
750				134				267				400
800	97	144	180	200	194	287	361	401	290	430	540	600
850				190				381				570
900	110	137	170	204	221	274	341	407	330	410	510	610
950				240				481				720
1000	104	180	240	220	207	361	481	441	310	540	720	660
1050				244				487				730
1100	137	187	320	230	274	374	641	461	410	560	960	690
1150				244				487				730
1200	144	230	324	234	287	461	647	467	430	690	970	700
1250				284				567				850
1300	190	284	307	297	381	567	614	594	570	850	920	890
1350				324				647				970
1400	190	280	330	317	381	561	661	634	570	840	990	950
1450				350				701			1050	1050
1500	204	384	450	320	407	767	901	641	610	1150	1350	960
1600	194	400	467	400	387	801	934	004	580	1200	1400	4000
1650				400				801			1050	1200
1700	234	384	450	004	467	767	901		700	1150	1350	
1800	230	400	467	384	461	801	934	767	690	1200	1400	1150
1900	277	384	584	40=	554	767	1167	00.4	830	1150	1750	4400
1950	000			467	=0.	20.1	4404	934	0.46	10=6	4700	1400
2000	280	417	567	=0.4	561	834	1134	400=	840	1250	1700	1000
2100	307	517	0	534	614	1034	4004	1067	920	1550	4000	1600
2200	297	517	600	F4-	594	1034	1201	105	890	1550	1800	485
2250	044			517		1101	100-	1034	0.10	1050	1000	1550
2400	314	550	634	667	627	1101	1267	1334	940	1650	1900	2000
2500	384	567	600	200	767	1134	1201	1001	1150	1700	1800	0.00
2550	400	550	001	800	004	4404	4007	1601	4000	4050	4000	2400
2600	400	550	634	201	801	1101	1267	170-	1200	1650	1900	2052
2700	4.47	200		884	201	1001		1767	4050	1000		2650
2800	417	600		4004	834	1201		2007	1250	1800		2400
2850	F07	00.4		1034	4404	4007		2067	4700	0000		3100
3000	567	934		1367	1134	1867		2734	1700	2800		4100

Important note

The tightening torques for flange bolts provided in the table offer a specific surface pressure based on the entire sealing surface for solid rubber flanges or the sealing bead in the case of rotatable flanges. In the case of solid rubber flanges, temporary settling process in the rubber flange area mean that under operating conditions the surface pressure falls to around 50% of the final value (Step III).

The residual effective gripping and sealing force is completely sufficient and suitable for test pressures up to 1.5 times the operating pressure.

Warning: The stipulated max. tightening torque may not be substantially exceeded, as increased pressure loading on the flow in the elastomer progresses constantly and leads to destruction (crushing).

Table 2: Bolt tightening torques for Types 48, 49, 50, 51, 53, 55, 56 and 65

DN	Step 1	Step 2			Step 3		
	for all	for all	PN 6	PN 10	PN 16	PN 25	ASA 150
	Nm	Nm	Nm	Nm	Nm	Nm	Nm
25	by hand	50	60	80	80	80	80
32	by hand	50	60	80	80	80	80
40	by hand	50	60	80	80	80	80
50	by hand	50	60	80	80	80	80
65	by hand	50	60	80	80	80	80
80	by hand	50	60	80	80	80	80
100	by hand	50	80	100	100	100	100
125	by hand	50	80	100	100	100	100
150	by hand	50	80	100	100	100	100
175	by hand	50	90	100	100	100	100
200	by hand	50	90	100	100	100	100
250	by hand	50	90	100	100	110	100
300	by hand	50	100	110	110	110	100
350	by hand	50	120	130	135	165	110
400	by hand	50	120	140	155	200	140
450	by hand	50	140	145	165	200	145
500	by hand	50	120	145	170	200	145
600	by hand	100	185	210	255	280	210
700	by hand	100	200	225	300	300	230
800	by hand	100	235	300	360	410	300
900	by hand	100	235	300	360	415	300
1000	by hand	100	300	360	425	525	360

Warning: Refer to the tightening scheme!

Table 3: Bolt tightening torques for Type 80

DN		PN 10			PN 25	PN 25				
	Bo Quantity	Its Thread	Torque Nm	Bo Quantity	olts Thread	Torque Nm				
20	,		10	,						
	4	M12	-	4	M12	10				
25	4	M12	20	4	M12	20				
32	4	M16	30	4	M16	30				
40	4	M16	40	4	M16	40				
50	4	M16	50	4	M16	50				
65	8	M16	70	8	M16	40				
80	8	M16	40	8	M16	40				
100	8	M16	40	8	M20	50				
125	8	M16	50	8	M24	80				
150	8	M20	60	8	M24	90				
200	8	M20	90	12	M24	100				
250	12	M20	60	12	M27	120				
300	12	M20	70	-	-	-				
350	16	M20	110	-	-	-				
400	16	M24	160	-	-	-				
500	20	M24	180	-	-	-				
600	20	M27	240	-	-	-				
700	24	M27	260	-	-	-				

Warning: Refer to the tightening scheme!

Threaded bolts and hexagonal nuts for fastening counter flanges to welding neck flanges according to DIN 1092-1 Type 11 for Types 50, 51, 55 and 39 (with perforations)

DN		PN 6	I		PN 10		PN 16				
	Quantity	Size	Length mm	Quantity	Size	Length mm	Quantity	Size	Length mm		
20	8	M10	45	8	M12	55	8	M12	55		
25	8	M12	50	8	M12	55	8	M12	55		
32	8	M12	50	8	M16	55	8	M16	60		
40	8	M12	50	8	M16	55	8	M16	60		
50	8	M12	50	8	M16	60	8	M16	60		
65	8	M12	50	16	M16	60	16	M16	60		
80	8	M16	60	16	M16	65	16	M16	65		
100	8	M16	60	16	M16	65	16	M16	65		
125	16	M16	60	16	M16	65	16	M16	70		
150	16	M16	65	16	M20	75	16	M20	75		
200	16	M16	70	16	M20	80	24	M20	75		
250	24	M20	75	24	M20	80	24	M24	85		
300	24	M20	75	24	M20	80	24	M24	90		
350	24	M20	75	32	M20	80	32	M24	90		
400	32	M32	80	32	M24	90	32	M27	100		
450	32	M32	85	40	M24	100	40	M27	110		
500	40	M40	90	40	M24	100	40	M30	110		
600	40	M40	90	40	M27	100	40	M33	120		
700	48	M10	100	48	M27	110	48	M33	120		
800	48	M27	110	48	M30	120	48	M36	130		
900	48	M27	110	56	M30	120	56	M36	130		
1000	56	M27	110	56	M33	120	56	M39	140		

¹ set = ISO 4017 hexagonal bolts + ISO 4032 hexagonal nuts + ISO 7089 U-washers

Warning: Refer to the tightening scheme!

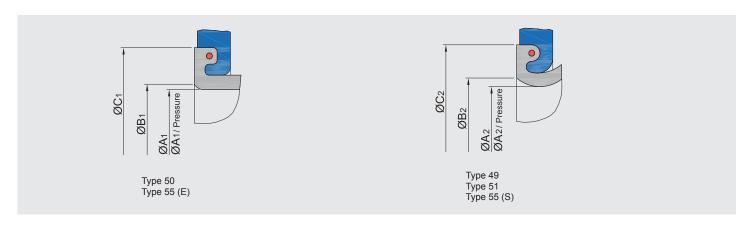
WILLBRANDT Pressure Units

Absolute and relative atmospheric pressure

In everyday use, pressure is often measured with reference to atmospheric pressure, i.e. when someone says their car tyres have a pressure of 2.3 bar, they are actually 3.3 bar, but 2.3 bar above atmospheric pressure (approx. 1 bar). So 2.3 bar relative atmosphere is the same as 3.3 bar absolute atmosphere.

The unit "bara" or "bar(a) is used for absolute pressure.

Relative pressures is given in the unit "barg" (bar gauge [manometer]) or "barü" (bar over atmospheric pressure).


Unit symbol	Unit name	Pa = N/m²	bar	m WS	Torr = mm Hg	lbf/in²	in Hg
1 Pa = 1 N/m ²	Pascal	1	0.00001	0.0001	0.0075	0.00014	0.000295
1 bar	bar	100000	1	10.1972	750.062	14.5037	29.53
1 kp/m ² = 1 mm WC	millimetre water column	9.80665	-	0.001	0.07356	0.00142	0.0029
1 m WC	metre water column	9806.65	0.09807	1	73.5559	1.42233	2.8959
1 kp/cm ² = 1 at	technical atmosphere	98066.5	0.98067	10	735.559	14.2233	28.959
1 atm	physical atmosphere	101325	1.01325	10.3323	760	14.696	29.9213
1 Torr = 1 mm Hg	millimetre of mercury	133.322	0.00133	0.013595	1	0.01934	0.03937
1 lbf/in ²	pound-force per square inch	6894.76	0.06895	0.70307	51.7149	1	2.03602
1 lbf/ft²	pound-force per square foot	47.8803	0.00048	0.00488	0.35913	0.00694	0.01414
1 in Hg	inch of mercury	3386.39	0.03386	0.34532	25.4	0.49115	1

WILLBRANDT Rubber Bellow Sealing Profile for Expansion Joints with Swivelling Flanges

When selecting a counter flange it is important to ensure that the internal diameter only exceeds measurement B (rubber bellow) by 2 mm. If the

internal diameter is larger, it is necessary to use a blank gasket (see fitting example **EB 16 D**).

DN		for Types 50	and 55 (E)		for Types 49, 51 and 55 (S)							
	C1	B1	A1	A1/pressure	C2 (Type 51/55)	C2 (Type 49)	B2	A2	A2/pressure			
	mm	mm	mm	mm	mm	mm	mm	mm	mm			
20	66	37	28.5	30	-	-	-	-	-			
25	66	37	28.5	30	-	-	-	-	-			
32	66	37	28.5	30	79	79	42	35	37			
40	74	42	36.0	39	79	79	42	35	37			
50	86	55	45.0	48	88	89	57	45	47			
65	106	71	60.5	64	104	104	69	59	61			
80	118	81	74.0	77	119	119	86	75	77			
100	138	106	94.0	98	142	142	110	98	100			
125	166	132	121.0	125	169	169	137	125	127			
150	192	160	147.0	151	195	195	164	149	151			
175	252	213	202.0	206	-	-	200	197	200			
200	252	213	202.0	206	244	245	200	197	200			
250	304	257	250.0	254	295	295	256	252	255			
300	354	309	300.0	304	351	345	304	299	302			
350	412	350	330.0	340	400	396	358	354	357			
400	470	414	404.0	408	450	450	405	402	405			
450	520	445	445.0	450	512	-	-	-	-			
500	570	514	504.0	508	563	550	508	504	507			
600	675	611	603.0	607	675	-	-	-	-			
700	780	708	680.0	695	-	-	-	-	-			
750	820	758	751.0	755	-	-	-	-	-			
800	887	813	801.0	805	-	-	-	-	-			
900	987	907	897.0	900	-	-	-	-	-			
1000	1087	1007	997.0	1000	-	-	-	-	-			

WILLBRANDT Tolerances According to the FSA Handbook for Handmade Expansion Joints Types 39, 40, 42, 56, 57, 58, 59, 61, 62, 63 and 64

DN	Internal dimension	External flange	Pitch circle diameter	Hole diameter	Overall length				Flanç	ge thick	iness	Flange align	
		dimension			≤ 150	≤ 300	≤ 600	> 600	≤ 10	≤ 15	>15	L ≤ 350	LF ≤ 350
≤ 550	±5	±6	±5	±2	±5	±5	±5	±1.0 %	±2	±3	±4	±3	±5
> 550 - ≤ 1150	±10	±13	±5	±2	±5	±5	±5	±1.0 %	±2	±3	±4	±3	±5
> 1150 - ≤ 1750	±10/-12	±19/-13	±6	±2	±6	±10	±10	±1.5 %	±2	±4	±4	±4	±6
> 1750	±10/-16	±25/-14	±6	±2	±6	±10	±10	±1.5 %	±2	±4	±4	±4	±6

WILLBRANDT Flange Connection **Dimensions**

nx Ød

Flange table

	DN		PN	16			PN	10			PN	16			PN	25	I
	Inches	Ø D mm	ØPCD mm	n	Ød mm	Ø D mm	ØPCD mm	n	Ød mm	Ø D mm	ØPCD mm	n	Ød mm	Ø D mm	ØPCD mm	n	Ød mm
20		90	65	4	11	105	75	4	14	105	75	4	14	105	75	4	14
25	1	100	75	4	11	115	85	4	14	115	85	4	14	115	85	4	14
32	1 1/4	120	90	4	14	140	100	4	18	140	100	4	18	140	100	4	18
40	1 ½	130	100	4	14	150	110	4	18	150	110	4	18	150	110	4	18
50	2	140	110	4	14	165	125	4	18	165	125	4	18	165	125	4	18
65	2 1/2	160	130	4	14	185	145	8	18	185	145	8	18	185	145	8	18
80	3	190	150	4	18	200	160	8	18	200	160	8	18	200	160	8	18
100	4	210	170	4	18	220	180	8	18	220	180	8	18	235	190	8	22
125	5	240	200	8	18	250	210	8	18	250	210	8	18	270	220	8	26
150	6	265	225	8	18	285	240	8	22	285	240	8	22	300	250	8	26
175	7	295	255	8	18	315	270	8	22	315	270	8	22	330	280	12	26
200	8	320	280	8	18	340	295	8	22	340	295	12	22	360	310	12	26
250	10	375	335	12	18	395	350	12	22	405	355	12	26	425	370	12	30
300	12	440	395	12	22	445	400	12	22	460	410	12	26	485	430	16	30
350	14	490	445	12	22	505	460	16	22	520	470	16	26	555	490	16	33
400	16	540	495	16	22	565	515	16	26	580	525	16	30	620	550	16	36
450	18	595	550	16	22	615	565	20	26	640	585	20	30	670	600	20	36
500	20	645	600	20	22	670	620	20	26	715	650	20	33	730	660	20	36
600	24	755	705	20	26	780	725	20	30	840	770	20	36	845	770	20	39
700	28	860	810	24	26	895	840	24	30	910	840	24	36	960	875	24	42
800	32	975	920	24	30	1015	950	24	33	1025	950	24	39	1085	990	24	48
900 1000	36 40	1075	1020	24	30	1115	1050	28	33	1125	1050	28	39	1185 1320	1090 1210	28	48
1200	48	1175	1120 1340	28	30	1230 1455	1160	28	36	1255 1485	1170	28	42	1320	1210	28	56
1300	52	1405 1520	1450	32 32	33	1565	1380 1485	32 32	39	1585	1390 1490	32	48	_	_	-	-
1400	56	1630	1560	36	36	1675	1590	36	42	1685	1590	36 36	48	_	_	-	-
1500	60	1730	1660	36	36 36	1795	1705	36	42 48	1810	1705	36	48		_	-	_
1600	-	1830	1760	40	36	1915	1820	40	46 48	1930	1820	40	56 56	_	_	_	_
1700		1940	1865	40	39	2015	1920	44	48	2030	1920	44	56	_	-	_	_
1800	72	2045	1970	44	39	2115	2020	44	48	2130	2020	44	56	-	-	-	_
1900	-	2155	2075	44	42	2220	2125	48	48	2240	2125	44	62	-	-	-	-
2000	-	2265	2180	48	42	2325	2230	48	48	2345	2230	48	62	-	-	-	-
2100	84	2375	2285	48	42	2440	2335	48	56	-	-	-	-	-	-	-	-
2200	-	2475	2390	52	42	2550	2440	52	56	2555	2440	52	62	-	-	-	-
2400	96	2685	2600	56	42	2760	2650	56	56	2765	2650	56	62	-	-	-	-
2500	-	2795	2705	56	48	2860	2750	56	56	2865	2750	60	62	-	-	-	-
2600	-	2905	2810	60	48	2960	2850	60	56	2965	2850	60	62	-	-	-	-
2800	-	3115	3020	64	48	3180	3070	64	56	-	-	-	-	-	-	-	-
3000	120	3315	3220	68	48	3405	3290	68	62	-	-	-	-	-	-	-	-
3200	-	3525	3430	72	48	-	-	-	-	-	-	-	-	-	-	-	-
3400	-	3735	3640	76	48	-	-	-	-	-	-	-	-	-	-	-	-
3600	144	3970	3860	80	56	-	-	-	-	-	-	-	-	-	-	-	-
3800	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

WILLBRANDT Flange Connection **Dimensions**

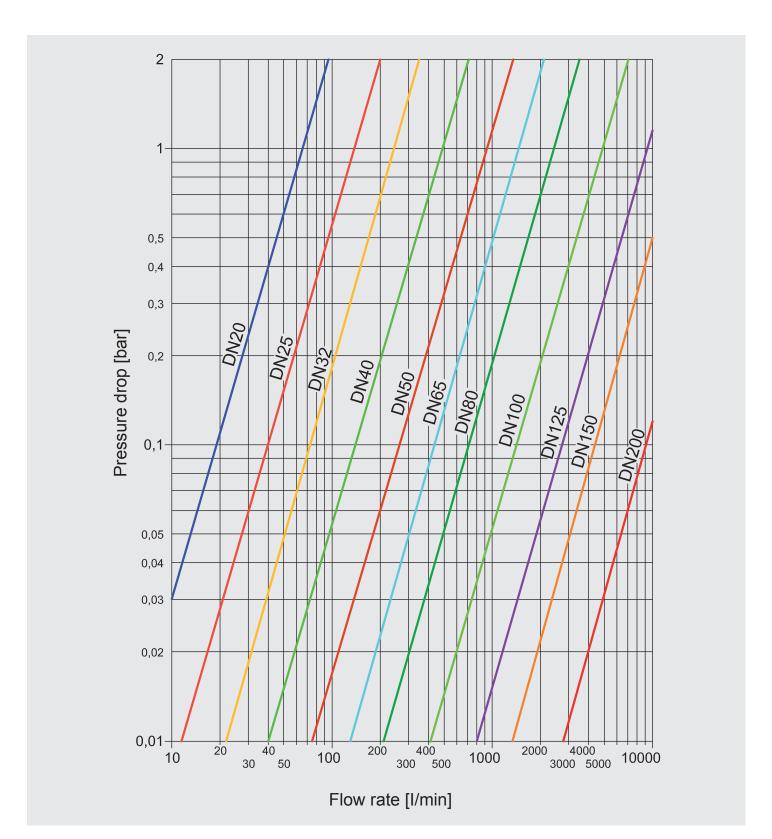
n x Ød

Flange table

D	DN ASME B 16.5-150 lbs			ASI	/IE B 16.47 S	Series A 150	Ibs	AWWA C207 Class D					
	l	ØD	ØPCD	n	Ød	ØD	ØPCD	n	Ød	ØD	ØPCD	n	Ød
	Inches	mm	mm		mm	mm	mm		mm	mm	mm		mm
20	3/4	-	-	-	-	-	-	-	-	-	-	-	-
25	1	108.0	79.2	4	15.7	-	-	-	-	-	-	-	-
32	1 1/4	117.0	89.0	4	15.7	-	-	-	-	-	-	-	-
40	1 1/2	127.0	98.4	4	15.7	-	-	-	_	-	-	-	-
50	2	152.4	120.6	4	19.0	-	-	-	-	-	-	-	_
65	2 1/2	177.8	139.7	4	19.0	-	-	-	_	-	-	-	-
80	3	190.5	152.4	4	19.0	-	-	-	-		-	-	_
100	4	228.6	190.5	8	19.0	-	-	-	_	-	-	-	-
125	5	254.0	215.9	8	22.2	-	-	-	-	-	-	-	_
150	6	279.4	241.3	8	22.2	-	-	-	-	-	-	-	-
-	7	311.2	269.9	8	22.2	-	-	-	_	-	-	-	-
200	8	342.9	298.4	8	22.2	-	-	-	-	-	-	-	-
250	10	406.4	361.9	12	25.4	-	-	-	_	-	-	-	-
300	12	482.6	431.8	12	25.4	-	-	-	_	482.6	431.8	12	25.4
350	14	533.4	476.2	12	28.6	-	-	-	_	533.4	476.3	12	28.6
400	16	596.9	539.7	16	28.6	-	-	-	_	596.9	539.8	16	28.6
450	18	635.0	577.8	16	31.8		-	_	_	635.0	577.9	16	31.8
500	20	698.5	635.0	20	31.8	-	-	-	_	698.5	635.0	20	31.8
550	22	749.3	692.2	20	34.9	-	-	-	_	749.3	692.2	20	34.9
600	24	812.8	749.3	20	34.9	-	-	_	_	812.8	749.3	20	34.9
650	26	-	_	-	-	870.0	806.4	24	34.9	870.0	806.4	24	34.9
700	28	-	-	-	_	927.1	863.6	28	34.9	927.1	863.6	28	34.9
750	30	-	-	-	_	984.3	914.4	28	34.9	984.3	914.4	28	34.9
800	32	-	-	_	_	1060.5	977.9	28	41.3	1060.5	977.9	28	41.3
850	34	-	_	_	_	1111.3	1028.7	32	41.3	1111.3	1028.7	32	41.3
900	36	-	-	_	_	1168.4	1085.8	32	41.3	1168.4	1085.9	32	41.3
950	38	_	_	_	_	1238.3	1149.4	32	41.3	1238.3	1149.4	32	41.3
1000	40	-	-	_	_	1289.1	1200.2	36	41.3	1289.1	1200.2	36	41.3
1050	42	_	-	_	_	1346.2	1257.3	36	41.3	1346.2	1257.3	36	41.3
1100	44	-	-	_	_	1403.4	1314.5	40	41.3	1403.4	1314.5	40	41.3
1150	46	_	-	_	_	1454.2	1365.3	40	41.3	1454.2	1365.3	40	41.3
1200	48	-	-	_	_	1511.3	1422.4	44	41.3	1511.3	1422.4	44	41.3
1250	50	_	_	_	_	1568.5	1479.6	44	47.6	1568.5	1479.6	44	47.6
1300	52	-	-	_	_	1625.6	1536.7	44	47.6	1625.6	1536.7	44	47.6
1350	54	-	_	_		1682.7	1593.8	44	47.6	1682.7	1593.8	44	47.6
1400	56	-	-	-	_	1746.3	1651.0	48	47.6	1746.3	1651.0	48	47.6
1450	58	-	-	_	_	1803.4	1708.2	48	47.6	1803.4	1708.2	48	47.6
1500	60	-	-	-	_	1854.2	1758.9	52	47.6	1854.2	1759.0	52	47.6
1650	66	-	_	-	-	-	_	-		-2032.0	1930.4	52	47.6
1800	72	-	-	-	-	-	-	-	-	2197.1	2095.5	60	47.6
1950	78	_	_	-	_	-	_	-	_	2362.2	2260.6	64	54.0
2100	84	-	-	-	-	-	-	-	-	2533.7	2425.7	64	54.0
2250	90	_	-	_	_	-	-	-	_	2705.1	2590.8	68	61.9
2400	96	-	-	_	_	-	_	_	_	2876.5	2755.9	68	61.9
2550	102	_	-	-		-	-	_	_	3048.0	2908.3	72	68.3
2700	108	-	-	-	_	-	-	-	_	3219.5	3067.1	72	68.3
2850	114	_	-	_	_	-	-	_		3390.9	3219.5	76	74.6
3000	120	-	-	-	_	-	-	_	_	3562.4	3371.9	76	74.6
3150	126	-	-	_	_	-	-	_	_	3734.0	3537.0	80	81.0
3300	132	-	-	_	_	-	-	_	_	3905.0	3702.0	80	81.0
3450	138	-	-	-	-	-	-	_	_	4077.0	3861.0	84	87.0
3600	144	-	-	-	-	-	-	-	-	4248.0	4020.0	84	87.0
				· - 1	- 1				- 1		1020.0	0- 1	07.0

WILLBRANDT Flange Connection **Dimensions**

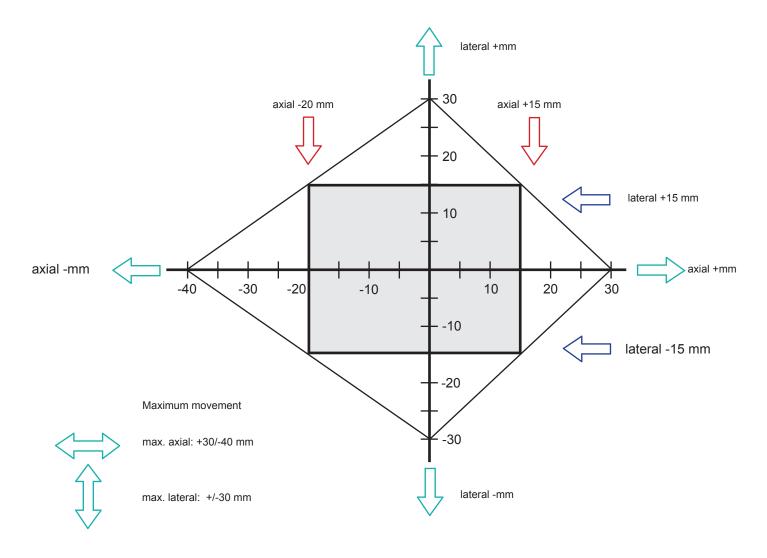
Flange table


	ON		JIS B	2220 5K			JIS B 2	220 10K			BS Ta	ble E	
		ØD	ØPCD	n	Ød	ØD	ØPCD	n	Ød	ØD	ØPCD	n	Ød
	Inches	mm	mm		mm	mm	mm		mm	mm	mm		mm
20	-	85	65	4	12	100	75	4	15	-	-	-	-
25	-	95	75	4	12	125	90	4	19	-	-	-	-
32	-	115	90	4	15	135	100	4	19	-	-	-	-
40	-	120	95	4	15	140	105	4	19	-	-	-	-
50	-	130	105	4	15	155	120	4	19	-	-	-	-
65	-	155	130	4	15	175	140	4	19	-	-	-	-
80	-	180	145	4	19	185	150	8	19	-	-	-	-
90	-	190	155	4	19	195	160	8	19	-	-	-	-
100	4	200	165	8	19	210	175	8	19	215.9	177.8	8	19.0
125	5	235	200	8	19	250	210	8	23	254.0	209.5	8	19.0
150	6	265	230	8	19	280	240	8	23	279.4	234.9	8	22.2
-	7	300	260	8	23	305	265	12	23	304.8	260.3	8	22.2
200	8	320	280	8	23	330	290	12	23	336.5	292.1	8	22.2
250	10	385	345	12	23	400	355	12	25	406.4	355.6	12	22.2
300	12	430	390	12	23	445	400	16	25	457.2	406.4	12	25.4
350	14	480	435	12	25	490	445	16	25	527.0	469.9	12	25.4
400	16	540	495	16	25	560	510	16	27	577.8	520.7	12	25.4
450	18	605	555	16	25	620	565	20	27	641.3	584.2	16	25.4
500	20	655	605	20	25	675	620	20	27	704.8	641.3	16	25.4
550	22	720	665	20	27	745	680	20	33	-	-	-	-
600	24	770	715	20	27	795	730	24	33	825.5	755.7	16	25.4
650	26	825	770	24	27	845	780	24	33	870.0	806.4	24	34.9
700	28	875	820	24	27	905	840	24	33	927.1	863.6	28	34.9
750	30	945	880	24	33	970	900	24	33	984.3	914.4	28	34.9
800	32	995	930	24	33	1020	950	28	33	1060.5	977.9	28	41.3
850	34	1045	980	24	33	1070	1000	28	33	1111.3	1028.7	32	41.3
900	36	1095	1030	24	33	1120	1050	28	33	1168.4	1085.8	32	41.3
950	38	-	-	-	-	-	-	-	-	1238.3	1149.4	32	41.3
1000	40	1195	1130	28	33	1235	1160	28	39	1289.1	1200.2	36	41.3
1050	42	-	-	-	-	-	-	-	-	1346.2	1257.3	36	41.3
1100	44	1305	1240	28	33	1345	1270	28	39	1403.4	1314.5	40	41.3
1150	46		-	-	-	-	-	-	-	1454.2	1365.3	40	41.3
1200	48	1420	1350	32	33	1465	1380	32	39	1511.3	1422.4	44	41.3
1250	50	-	-	-	-	-	-	-	-	-	-	-	-
1300	52	-	-	-		-	-	-	-	-	-	-	-
1350	54	1575	1505	32	33	1630	1540	36	45	-	-	-	-
1400	56	-	-	-	-	-	-	-	-	-	-	-	-
1450	58		-	-	-	-	-	-	-	-	-	-	-
1500	60	1730	1660	36	33	1795	1700	40	45	-	-	-	-

WILLBRANDT Pressure Loss in Low-Corrugated Bellow Expansion Joint

Types 39, 46, 50, 51, 53, and 55 for a liquid with a viscosity of 1 mm² (Englergrad)

WILLBRANDT Movement Diagram for Combined Movement Absorption (axial and lateral)

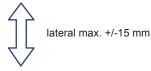

The rhombus below illustrates how a permissible combination of movement absorption can be represented for expansion joints.

The combination of lateral and axial movement may result in a maximum of 100 % utilisation for the expansion joint as a whole. The combined movements must fit into the rhombus as a rectangle.

Example:

For movement of -20 mm and +15 mm axially, the expansion joint can absorb another +/-15 mm laterally.

This rhombus can be used for all nominal diameters and sizes if the corresponding permissible maximum values for the expansion joint are plotted in the rhombus.


Any combination of movements can be found in this diagram.

The combined current movements must fit into the rhombus as a rectangle.

Example: axial -20 mm

axial +15 mm

Vibration Technology **Expansion Joints Noise Protection Systems Profiles and Moulded Parts Power Transmission Elements Special Sealings Rubber for Ship and Harbour**

WILLBRANDT KG Schnackenburgallee 180 22525 Hamburg Germany Phone +49 (0) 40 540093-0

+49 (0) 40 540093-47 Fax info@willbrandt.de eMail

Subsidiary Hannover

Reinhold-Schleese-Straße 22 30179 Hannover

Germany

Phone +49 (0) 511 99046-0 +49 (0) 511 99046-30 Fax eMail hannover@willbrandt.de

Subsidiary Berlin

Breitenbachstraße 7 - 9 13509 Berlin Germany

Phone +49 (0) 30 435502-25 +49 (0) 30 435502-20 Fax berlin@willbrandt.de eMail

WILLBRANDT Gummiteknik A/S

Finlandsgade 29 4690 Haslev Denmark

Phone +45 56870164 Fax +45 56872208 eMail info@willbrandt.dk www.willbrandt.dk web

WILLBRANDT SARLU

621, avenue Blaise Pascal 77550 Moissy Cramayel

France

Phone +33 (0) 1 85 51 31 60 +33 (0) 1 85 51 03 21 Fax eMail info@willbrandt.fr www.willbrandt.fr web

www.willbrandt.com