

World Class Bearing Technology

deva.bm[®] sliding bearings Maintenance-free, self-lubricating

Self-lubricating composite bearing material

Contemporary designs represent an enormous challenge to modern-day bearing materials because, frequently, zero maintenance is expected under severe to extreme conditions as well as under maximum loads. The constant pressure on costs additionally calls for increasing uptime of machinery and equipment and uncompromising standards of operational reliability. The maintenance-free, permanently self-lubricating heavy-duty bearing materials from the DEVA® product range offer bearing solutions guaranteed to operate reliably and safely over a long term.

Our bearing service

- Profit from more than 60 years of experience in selflubricating sliding bearings.
- Make use of our extensive material and application expertise spanning a very wide range of industries.
- Let our application engineering team assist you in the:
 - selection of the bearing materials,
 - design, purpose-built to your requirements,
 - assembly and installation,
 - calculation of estimated life time.

- Benefit from the latest material developments, tested using state of the art facilities.
- Ask for a simulation of your bearing application on our test rigs.
- Expect the highest quality standards, certified to DIN ISO 9001:2008, ISO/TS 16949:2009 and DIN EN ISO 14001:2004.

Content

		page
1	Material properties	4
2	Material structure	4
3	Materials	6
4	Mating Materials	8
5	Fits	9
6	Design	9
7	Installation	12
8	Recommended dimensions	17
9	Data relevant to the design of DEVA® bearings	20

FEDERAL-MOGUL POWERTRAIN

Material properties

deva.bm[®] is a self-lubricating composite bearing material, comprising a steel backing with a sliding layer of **deva.metal**[®]. **deva.bm** is produced using a special sintering process to get the following advantages:

deva.bm

- normally requires no lubrication.
- allows maintenance-free operation.
- possesses a high static and dynamic load-bearing capacity.
- has a low coefficient of friction.
- is stick-slip-free.
- offers a high margin of safety against mating material damage.
- is utilisable in dusty environments.
- is utilisable at temperatures ranging from -190 °C to +280 °C.
- is utilisable in corrosive environments.

- does not absorb water and guarantees maximum dimensional accuracy.
- is utilisable in seawater.
- is utilisable in radioactive environments.
- is electrically conductive. No electrostatic charging effects occur.
- is suitable for rotational, oscillating and linear movements.
- is suitable for micro movements.
- is suitable even for applications involving high edge pressures.

2

1

Material structure

Solid lubricants used

It is additionally possible to apply an initial surface film to support running-in phases in which the running conditions are purely dry. The thickness of the runningin-film is not considered in any bushings bore tolerance because it will be consumed during the running-inperiod.

Where used with conventional lubricants, the graphitecontaining **deva.bm** sliding layer can be impregnated with oil.

Solid lubricants properties	Solid lubricants properties									
Properties	Graphite	PTFE								
Crystal structure	hexagonal	none								
Specific gravity	2.25	2.15 - 2.20								
Coefficient of friction in air	0.1 - 0.18	0.01 to 0.30								
Chemical resistance	very good	very good								
Corrosive resistance	good	very good								
Nuclear radiation resistance	very good	not suitable								
Performance in air	very good	very good								
Performance in water	very good	good								
Performance in vacuum	not suitable	very good								

Layer structure and microstructure of deva.bm

The distinguishing features of **deva.bm** are its highly durable steel backing and the bronze matrix with homogeneous solid lubricant indentations that ensure low friction coefficients. The latter is either graphite of varying particle form and size, or PTFE.

Materials

3

3.1 Material properties

Properties of steel backing and physical properties of deva.bm ^{® 1)} T												
	Materials Properties of steel backing Physical properties Mechanical procession											
		Alloys ⁵⁾	0.2 % Yield min.	Tensile strength	Linear coefficient of thermal expansion 20 - 100 °C	Density	Hardness	Compressive strength				
Symbol Unit			R _{p02} MPa	R _m MPa	α₁ 10 ⁻⁶ /Κ	ρ g/cm³	HBmin	σ _{dB} MPa				
Bronze	alloys											
	deva.bm 302	stainless ⁴⁾	210	500 - 700	16.0	6.5	40	320				
	deva.bm 372	stainless ⁴⁾	210	500 - 700	16.0	6.3	40	320				
	deva.bm 382	unalloyed ³⁾	140	270 - 350	12.0	6.0	40	300				
	deva.bm 3882)	unalloyed ³⁾	140	270 - 350	12.0	6.6	40	300				
	deva.bm 392	stainless ⁴⁾	210	500 - 700	16.0	6.0	40	300				
	deva.bm 362/9P	stainless ⁴⁾	210	500 - 700	16.0	6.5	35	320				

Current properties and values are listed in the DEVA® material sheets. These are provided on request

deva.bm 388 has lubrication indentations in the sliding layer.

³⁾ 1.0338

4) Standard 1.4301 or 1.4571 on demand

Other backing materials (e.g. sea water resistant steel) on request

Bearing properties of deva.bm

	Alloys Bearing properties										
		Max. perm	issible load	Max. sliding velocity	Max. pU value	Temperat	ure range	Coef. of friction ^{2) 3)}	Min. shaft	Shaft surface finish	
		[static] ¹⁾	[dynamic] ¹⁾	[dry]	[dry]	[max]	[min]	[dep. on op. cond.]	hardness	[optimum]	
Symbol		P _{stat/max}	P _{dyn/max}	U _{max}	₽U _{max}	T _{max}	T _{min}	f		R	
Unit		MPa	MРа	m/s	MPa × m/s	°C	°C		HB/HRC	μm	
Bronze alloys											
	deva.bm 302	280	150 ⁵⁾	0.10	0.4	280	-150	0.13 - 0.22	180HB	0.2 - 0.8	
	deva.bm 372	280	80	0.25	0.8	280	-150	0.11 - 0.18	180HB	0.2 - 0.8	
	deva.bm 382	250	80	0.50	1.0	280	-150	0.10 - 0.16	180HB	0.2 - 0.8	
	deva.bm 3884)	250	120	1.00	1.5	280	-150	0.10 - 0.16	180HB	0.2 - 0.8	
	deva.bm 392	280	100	0.50	1.0	280	-150	0.10 - 0.16	180HB	0.2 - 0.8	
	deva.bm 362/9P	280	120	1.00	2.0	250	-190	0.05 - 0.13	180HB	0.2 - 0.8	

⁾ Under optimum operating conditions.

The stated sliding friction coefficients are not guaranteed properties. They have been determined on our test rigs using field-proven parameters that do not necessarily reflect the actual application of our products and their service environment. We offer customer-specific friction and wear tests on request.

³⁾ Axial bearings tend to higher friction coefficients than radial bearings

 $^{\rm 4)} \ \overline{p} U$ = 1.5 if dimples and grease lubrication are used

In case of higher loads (>50 MPa) superposed by an (expected) high number of sliding cycles, the use of deva.bm 309 (same alloy+lubrication dimples) with an additional lubricant is recommended.

Table 3.1.B

3.2 Chemical resistance

The following decision chart provides guidance on the selection of the appropriate deva.bm alloy according to the environmental conditions of the application.

Definitions

- Resistant
- ✓ Resistant
 O Resistant depending on construction, oxygen content, temperature, etc.
- × -Not recommended No data available

Chemical resistanc				Table 3
Medium/ chemical substance	Concentration in %	Temperature in °C	Alloys deva.bm	
			302 / 372 / 392 / 362/9P	382 / 388
itura una sei da	5	20		
itrong acids	5			
lydrochloric acid		20	× 0	×
lydroflouric acid	5	20		×
litric acid	5	20	×	×
ulphuric acid	5	20	✓	×
hosphoric acid	5	20	\checkmark	×
Neak acids				
Acetic acid	5	20	\checkmark	×
ormic acid	5	20	\checkmark	×
Boric acid	5	20	\checkmark	×
Citric acid	5	20	\checkmark	×
Bases	10	20		
Ammonium hydroxide	10	20	×	×
Potassium hydroxide	5	20	✓	×
odium hydroxide	5	20	\checkmark	×
Solvents				
Acetone		20	✓	×
Carbon tetrachloride		20	✓	×
thanol		20	✓	×
thyl acetate		20	✓	×
thyl chloride		20	✓	*
Glycerin		20	↓ ↓	0
		20	•	
Salts				
Ammonuim nitrate			×	×
Calcium chloride			\checkmark	×
Magnesium chloride			\checkmark	×
Magnesium sulphate			\checkmark	×
odium chloride			\checkmark	×
odium nitrate			\checkmark	×
Zinc chloride			×	×
Zinc sulfate			\checkmark	×
Gases				
Ammonia			0	
Chlorine				×
			×	*
Carbon dioxide			✓ 	*
luorine			×	*
Sulphur dioxide			✓	*
Hydrogen sulphide			0	×
Nitrogen			✓	×
Hydrogen			✓	×
uels and lubricants				
Paraffin		20	√	\checkmark
Gasolene		20	√	1
Kerosene		20	✓	✓
Diesel fuel		20	✓	✓ ✓
vineral oil		70	✓	√ √
IFA - ISO46 water-in-oil		70	✓	↓
HFC - water-glycol		70	✓	✓ ✓
HFD - phosphate ester		70	✓ ✓ ✓	✓ ✓
= priospriate cater			· · · · ·	×
Others				
Others Vater		20	✓	×
		20 20	√ √	× ×

Mating material

The **deva.bm**[®] bearing materials can be used only with mating materials demonstrating a hardness of at least 180 HB. Where lubricant is additionally introduced into the sliding contact, hardness values of >130HB are also permissible. In abrasive environments, a surface hardened to 35 HRC/45 HRC should be used. The ideal mating surface roughness for **deva.bm** is $\mathbf{R}_a = 0.2$ to 0.8 µm, produced by grinding. Rougher surfaces are also acceptable, depending on the operating conditions. To obtain the right surface roughness, it is equally possible to use bushings of a suitable hardness. Hardfaced or galvanized protective layers (normally coated, hard-chrome, nickel-plated) can also be used to a limited extent.

The corrosion criteria for the mating materials have to be determined on the basis of the operating conditions in each case. The adjacent table provides an overview of several possible mating materials.

Mating materials for st	Mating materials for standard applications Table 4.1.A										
Material number DIN designation Comparable standards											
USA – ANSI GB – B.S. 9 70 F – AFNOR											
1.0543	ZSt 60-2	Grade 65	55C	A60-2							
1.0503	C45	1045	080M46	CC45							
1.7225	42CrMo4	4140	708M40	42CD4							

Mating materials for c	Mating materials for corrosive environments Table 4.1.1									
Material number	DIN designation	Comparable standards								
		USA – ANSI	GB – B.S. 9 70	F – AFNOR						
1.4021	X20Cr13	420	420537	Z20C13						
1.4057	X17CrNi-16-2	431	432529	Z15CN16.02						
1.4112	X90CrMoV18	440B	-	(Z70CV17)						
1.4122	X35CrMo17-1	-	-	-						

Mating materials for seawater applications										
Material number	DIN designation	Comparable standards								
	USA – ANSI GB – B.S. 9 70 F – AFNOR									
1.4460	X3CrNiMoN27-5-3	329	-	-						
1.4462	X2CrNiMoN22-5-3	UNS531803	318513	Z3CND24-08						
2.4856	Inconel 625	-	-	-						

5

6

Fits

- deva.bm is pressed into the housing with an interference fit (using a screw press, hydraulic press or press-fit mandrel). Tapping or driving into place is not permissible.
- The standard housing bore is H7.
- Mean roughness of housing: $R_a = 3.2 \ \mu m$
- The housing has a chamfer of 20° 40° for easier mounting.
- To achieve minimum clearances after mounting (IT7 or higher), finishing should take place in the mounted state. For this purpose, deva.bm can be provided with a machining allowance, in which case the running-in film has to be applied after finishing.

Permissible fit and tole	Permissible fit and tolerance ranges Table 5.1											
Inner diameter D ₁	Inner diameter D ₁ D ₁ tolerance excl. running-in film Shaft											
	in installed state	Standard application	Precision applications									
mm												
< 20	Н9	d7	e7									
> 20	H8	d7	e7									
> 45	H8/H9 (standard)	d7	e7									
> 180	H8/H9	d7	е7									

Design 6.1 Sliding surface design

Sliding surfaces

Plain sliding surface

For applications without any special dry running criteria, **deva.bm** can be used with a plain sliding surface and a running-in film.

Cleaning grooves

For difficult, non-lubricated applications in abrasive and vibrating environments, etc., **deva.bm** can also be provided with cleaning grooves in the sliding layer as a means of prolonging the service life. Lubrication indentations

For grease-lubricated applications, the **deva.bm** sliding layer can be provided with regularly spaced lubrication indentations, which act as a lubricant ,reservoir' to prolong the service life.

6.2 Special design solutions

6.3 Description what values to be considered for design

DEVA® differentiates load cases (0 to 3) regarding the character of load stressing a bearing. This is to consider fatigue influences in case of dynamic pressure. The percentage values are refering to the limit values described in the material data sheet or technical handbooks. This worksheet is related to DEVA work instruction A 616 (see also "Qualitäts-, Umwelt- und Arbeitsschutz-Management Handbuch, Verfahrensanweisungen + Arbeitsanweisung").

FEDERAL-MOGUL POWERTRAIN

Installation

7

7.1 Installation of deva.bm cylindrical bearings

7.2 Installation of deva.bm sliding bearings by supercooling

deva.bm bearings with > 130 mm can be installed by supercooling with dry ice or liquid nitrogen. Both substances are classified as hazardous. We expressly draw attention to dealing with hazardous substances. Safety data sheets are available on request. To achieve a uniform supercooling, the dry ice should be crushed to about the size of a walnut. The sliding bearings should be completely immersed when using liquid nitrogen. The time required for complete supercooling of the bearings is between 15 minutes to 1 hour depending on the volumes of the parts to be cooled.

7.3 Fastening of deva.bm sliding plates with countersunk flat head screws

Thread to DIN 13	d	D	D	D	S _s	S		Hole spacing tolerance supporting element and deva.bm
						unalloyed	stainless steel	
	mm	mm	mm	mm	mm	mm	mm	
M5	5.3	11	9.5	10.5	2	0.8	0.8	± 0.10
M6	6.4	13	11.5	12.5	2/2.5	0.8	0.8	± 0.10
M8	8.4	17	15.0	16.0	2.5/3	1.0	0.8	± 0.10
M10	10.5	21	18.5	19.5	3/5	1.0	0.8	± 0.15
M12	13.0	25	22.5	23.5	5	1.0	0.8	± 0.15

deva.bm sliding plates – Hole spacing and installation

Notes

The number and size of the screws depends on the occurring stresses and the shearing forces to be withstood as a result. We recommend as guide values:

 $b_1 = 10 - 30 \text{ mm} - \text{if } b_1 < 4 \text{ mm}$, should nicks be made as shown in the drawing below, in order to avoid chipped sliding layer edges.

 $l_1 = 60 - 150 \text{ mm}$

b ≈ (1 - 1.5) D

Maximum machining depth for deva.bm

Notes

When screwing into place, secure deva.bm with a pressure plate. Tighten alternately on the left and right sides, in relation to the centre.

Dimensions

8.1 Recommended dimensions deva.bm cylindrical bearings

deva.bm bearings are made to DIN ISO 3547 standard. Other sizes and tolerances for special applications are also possible.

The sizes given in the following table can be manufactured as standard in all the alloys listed in this manual.

Cylindrical bearings

Bearing width B_±0.25 mm Dx Dx Sx Cx Cx Cx Cx To 15 20 25 30 40 50 60 70 80 100 12 140 150 160 180 100 15 20 25 30 40 50 60 70 80 100 120 140 150 160 180 100 15 20 25 30 40 50 60 70 80 100 120 140 150 160 180 200 92 12 14 10 20.40 0.7 0.5 4	Dime	nsions	deva.b	m cylin	drical b	earing	S	Tabl	le 8.1.1
Nominal dimensions: D ₁ D ₂ S _a S _i C _i C _j Tot 15 20 25 30 40 50 60 70 80 100 12 140 150 160 180 100 120 140 150 160 180 100 120 140 150 160 180 100 120 140 150 150 160 180 100 120 140 150 150 160 180 200 12 12 130 100 2.0.40 0.7 0.5	Bore t	olerance	e (after n	nounting)				
D _n D _k S _h C ₁ C ₂ 10 15 20 23 30 40 50 60 70 80 100 120 140 150 160 180 200 T 10 11 14 1.0 2.0.40 0.7 0.5 10 10 10 10 10 10 10 10 10 11 10 10 2.3 2.0.50 10.0 0.6 10 0.6								Bearing width B ₁ ±0.25 mm	
Imm mm mm <t< th=""><th></th><th>D,</th><th>D,</th><th>S_B</th><th>S,</th><th>C,</th><th>С,</th><th>10 15 20 25 30 40 50 60 70 80 100 120 140 150 160 184</th><th>0 200</th></t<>		D,	D,	S _B	S,	C,	С,	10 15 20 25 30 40 50 60 70 80 100 120 140 150 160 184	0 200
12 14 14 1.0 20.40 0.7 0.5 0.									
92 27 1.5 2.0 1.0 0.6 0 <td< td=""><td>6Н</td><td>12 14 15 16 18</td><td>14 16 17 18 20</td><td>1.0</td><td>≥ 0.40</td><td>0.7</td><td>0.5</td><td>welded, additionally locking recommend very large deva.bm bearings are</td><td>ded.</td></td<>	6Н	12 14 15 16 18	14 16 17 18 20	1.0	≥ 0.40	0.7	0.5	welded, additionally locking recommend very large deva.bm bearings are	ded.
92 32 32 36 40 40 40 40 40 40 40 40 40 40 40 40 40		22 24	25 27	1.5	≥ 0.50	1.0	0.6	deva.bm 388 and	
45 55 60 60 65 70 70 50 75 75 50 60 70 2.5 ≥ 0.70 1.8 1.0 Image: Constraint of the second of the	H8	28 30 32 35 36 38 40	32 34 36 39 40 42 44	2.0	≥ 0.75	1.5	0.8	in diameters from $D_1 > 28$ mm. deva.bm 362/9P is available in width $B_1 < 190$ mm only. Cross cleaning grooves are available	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		45 50 55 60 65 70	50 55 60 65 70 75	2.5	≥ 0.70	1.8	1.0		F
800 810	H8 (precision) / H9 (standard)	80 85 90 95 100 105 110 115 125 130 135 140 145 150 160 180 200 220 240 250	86 91 96 101 106 111 126 131 136 141 146 151 156 166 186 206 226 226 246	3.0	≥ 1.00	2.5	1.5	For a safe bearing seat, we recommend for a ratio between housing bore diameter and length ratio (inner diameter / B ₁) > 0.25 to	
			D ₁ + 2 ×	5.0	≥ 1.50	3.0	2.0	secure the bushing mechanically, e.g. by cylindrical pins.	
Further dimensions on request.		recommer	nded dime						

8.2 Dimensions deva.bm sliding plates

deva.bm sliding plates are deliverable as standard in the following materials: **deva.bm** 302, **deva.bm** 372,

deva.bm 392 and deva.bm 362/9P. Other materials and thicknesses are deliverable on request.

Dimensions deva.bm sliding plates Table											
Wall thickness S _s ³⁾	Wall thickness tolerance	Sliding layer thickn. S	Useful width W ₁ ²⁾	Length L							
		min	tolerance +1 mm	tolerance +3 mm							
mm	mm	mm	mm	mm							
2.5	± 0.05 ¹⁾	0.75	200	1750							
3.0	± 0.05 1)	1.05	200	1750							
5.0	± 0.05 ¹⁾	1.55	200	1750							
10.0	± 0.05 1)	2.00	200	1000							
¹⁾ Different tolerances possible ²⁾ For deva.bm 362/9P W ₁ = 190 mm ³⁾ deva.bm/9p on request											

8.3 Dimensions deva.bm sliding plates

The minimum bending radius for **deva.bm** depends on the total thickness of the steel backing and sliding layer.

Manufacturing for deva.bm rac	Table 8.3.1				
Segment thicknes	for deva.bm sli	Minimum bending diameter for deva.bm sliding plates with sliding layer at the			
	Inner diamet	er Outer diameter			
mm	mm	mm			
1.0	10	_ 2)			
1.5	20	_ ²⁾			
2.0	28	_ ²⁾			
2.5	45	_ 2)			
3.0	75	600			
5.0	250	800			
¹⁾ Other thicknesses on requi ²⁾ On request	est				

Contour elements

Sliding plate

Data relevant to the design of DEVA® bearings

				Questionaire 9.1.A
Description of application				
Steel Industry Wind Energy Rubber and Plastic Industry	Steam and Gas Turbines Offshore and Marine Heavy-duty Vehicles	Railwa	p Power	New design Existing design Project No.
Plain bearing	Flanged bearing	Thrust wash	Angular motion	Sliding plate
Quantity Dimensions [mm] Inner diameter Outer diameter Bearing width Outer ring width Flange outer diameter Flange thickness Wall thickness Plate length Plate width Plate thickness Loading Static Dynamic Alternating	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 Item 3	Motion Speed [rpm] Sliding speed [m/s] Stroke length [mm] Double strokes [/min] Rotating angle [°] Frequency [n/min] Tilt angle (spherical bearing) [°] Operating time Continuous operation Intermittent operation Duty operation [%/h] Days/year Frictional distance [km] Fits/tolerances Shaft Bearing housing	Item 1 Item 2 Item 3 Item 1 Item 2 Item 3
Impact Radial load [kN] Axial load [kN] Surface pressure Radial [MPa] Axial [MPa] Mating material Material no./type Hardness [HB/HRC] Roughness R _a [µm] Housing material Material no./type		2 Item 3	Environmental conditions Emperature at bearing Contact medium Other influences Lifetime Desired operating time [h] Permissible wear [mm] Company Company name Address	Item 1 Item 2 Item 3
Lubrication Dry running Permanent lubrication Medium lubrication Medium Lubricant Initial lubrication Hydrodyn. lubrication Dynamic viscosity		2 Item 3	Contact person Phone Fax Cell-phone E-mail	

		Questionaire 9.1.B
Remarks		
Certificate required (e.g. 3.1) Acceptance procedure (e.g. 3.2)	yes no	
Explaination		
	 * angle: According to DEVA[®] definition, one cycle is four times the angle β. This is the basis to calculate the expected sliding distance. Example: Bushing D₁ = 50 mm and agle β = 5° → 1 cycle shows a sliding distance of 8.73 mm 	

Portfolio

DEVA® in marine/offshore

DEVA[®] in heavy-duty

Industry solutions

deva.metal®

deva.glide®

deva.tex®

Product range

Product information

Spherical bearings

Disclaimer

The present technical documentation has been prepared with care and all the information verified for its correctness. No liability, however, can be accepted for any incorrect or incomplete information. The data given in the documentation are intended as an aid for assessing the suitability of the material. They are derived from our own research as well as generally accessible publications.

The sliding friction and wear values stated by us or appearing in catalogues and other technical documentation do not constitute a guarantee of the specified properties. They have been determined in our test facilities under conditions that do not necessarily reflect the actual application of our products and their service environment or permit comprehensive simulation in relation to them.

We provide guarantees only after written agreement of the test procedures and parameters and of all the relevant characteristics which the product is required to have.

All transactions conducted by DEVA[®] are subject, in principle, to our terms of sale and delivery as indicated in our offers, product brochures and price lists. Copies are available on request. Our products are subject to a constant process of development. DEVA[®] reserves the right to amend the specification or improve the technological data without prior notice.

DEVA®, deva.bm®, deva.bm®/9P, deva.metal®, deva.glide® and deva.tex® are registered trade marks of Federal-Mogul Deva GmbH, D-35260 Stadtallendorf, Germany.

Federal-Mogul DEVA GmbH Schulstraße 20 35260 Stadtallendorf/Germany

Phone +49 6428 701-0 Fax +49 6428 701-108

www.deva.de

www.federalmogul.com