

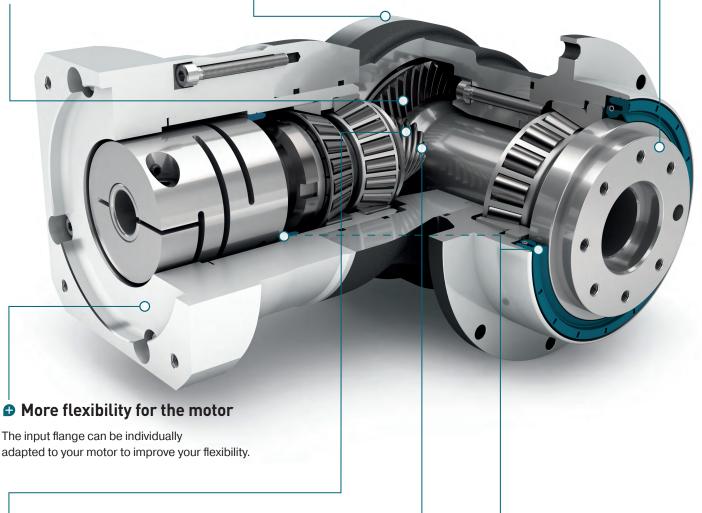
WPSFN

The shortest spiral-toothed right angle gearbox with flange output shaft and hollow shaft

- ♣ Space-saving thanks to minimal installation height
- Greater quality due to high-class gearing
- ➡ Standard flange interface with hollow shaft

Our new right angle planetary gearbox at a glance:

Greater quality due to high-class gearing


Thanks to its spiral gearing, the **WPSFN** achieves optimal, homogeneous synchronism. The two-stage right angle precision gearbox operates with extremely low vibration with the helical-toothed planetary stage. As a result, your machine produces the highest surface quality and the best prints.

Space-saving thanks to minimal installation height

The **WPSFN** is the shortest right angle precision gearbox. Depending on the frame size, you may use up to 25% less installation space than with comparable right angle gearboxes with spiral gearing.

Standard flange interface with hollow shaft

The **WPSFN** right angle precision gearbox with its EN ISO 9409-1 standard flange interface allows you to quickly integrate drive components such as a flanged pinion or turntable. Discover new design solutions for flexible line routing with the hollow shaft integrated in the single-stage **WPSFN**.

Particularly quiet drive

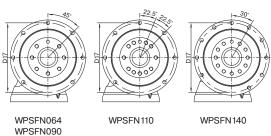
Thanks to the Neugart-developed spiral teeth, the **WPSFN** delivers particularly quiet and low-vibration performance.

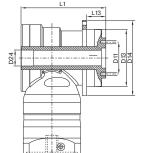
The machine does not need any additional noise absorption measures.

Minimized backlash for maximized precision

Thanks to the high gear tooth quality, the **WPSFN** also exhibits minimized backlash (< 3 arcmin). This increases your machine's precision and provides you with a high precision drive solution.

Perfectly sealed


This gearbox resists dust and water jets. Thanks to its radial shaft seal, the **WPSFN** is also ideal in the most grueling conditions. Perfect IP 65 protection class, due to its intelligent design.



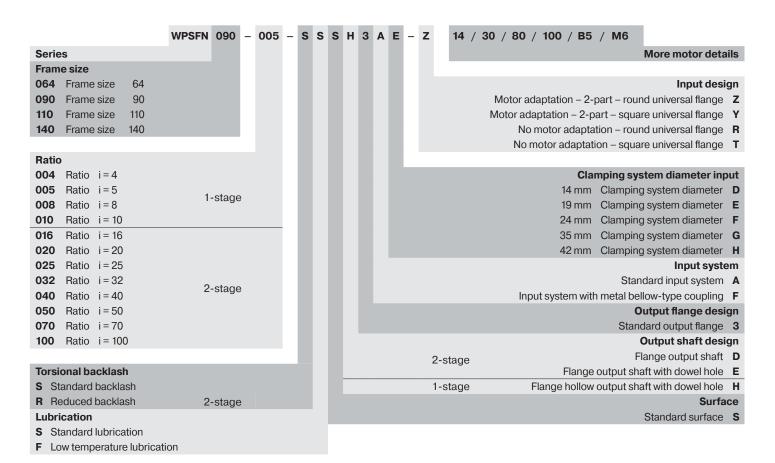
Technical highlights

Gearbox characteristics			WPSFN064	WPSFN090	WPSFN110	WPSFN140	Z ⁽¹⁾	
Service life ⁽²⁾			20,000					
Service life ⁽²⁾ at T _{2N} x 0.88	t∟	h	30,000					
Efficiency at full load (3)	η	%	94				1	
			93				2	
Operating temperature	T_{min}/T_{max}	°C	- 25 / +90					
Protection class			IP 65					
Standard backlash	j _t	arcmin	< 5	< 5	< 5	< 5		
Reduced backlash			< 3	< 3	< 3	< 3	2	
Torsional stiffness ⁽³⁾	Cg	Nm/arcmin	1.9 - 2.6	4.0 - 5.5	10.1 - 13.5	26.0 - 34.5	1	
			5.3 - 6.9	15.3 - 20.5	33.5 - 44.0	85.0 - 111.0	2	
Gearbox weight	m _G	kg	3.3	6.1	10.9	24.0	1	
			3.7	5.3	8.4	17.8	2	
Running noise ⁽⁴⁾	Q_g	dB(A)	66	67	68	70		
Output shaft loads								
Radial force ⁽²⁾⁽⁵⁾	Fr	N	2100 - 2400	3900 - 4400	4800 - 5500	11000 - 12000		
Axial force ⁽²⁾⁽⁵⁾	F _a		3700 - 4300	6300 - 8200	8400 - 9500	7500 - 8500		
Tilting moment for 20,000 h ⁽²⁾⁽⁶⁾	M _{K20,000 h}	Nm	147 - 200	361 - 484	534 - 689	1030 - 1989		
Moment of inertia								
Mass moment of inertia (3)	J	kgcm²	0.500 - 0.822	1.046 - 1.591	4.857 - 6.435	15.220 - 18.825	1	
			0.497 - 0.642	0.497 - 0.659	1.015 - 1.452	4.810 - 6.449	2	
			0.107 0.012	0.10. 0.000	11010 11102		_	
Output torques								
Nominal output torque ⁽³⁾	T _{2N}	Nm	22 - 45	40 - 90	75 - 160	160 - 320	1	
			28 - 62	59 - 130	140 - 310	305 - 625	2	
Max. output torque(3)(7)	T _{2max}	Nm	35 - 72	64 - 144	120 - 256	256 - 512	1	
			45 - 99	94 - 210	224 - 502	488 - 1003	2	
Emergency stop torque (3)(8)	T _{2Stop}	Nm	75 - 100	150 - 200	300 - 400	700 - 800	1	
			80 - 150	175 - 300	340 - 650	600 - 1650	2	
Input speeds			4550 0050	1050 0550	050 4500	050 4400		
Average thermal input speed at T _{2N} and S1 ⁽³⁾⁽⁹⁾	n _{1N}	min ⁻¹	1550 - 2650	1350 - 2550	850 - 1500	850 - 1400	1	
			2000 - 3050	1950 - 3850	1400 - 3300	1200 -2400	2	
Max. mechanical input speed ⁽⁹⁾	n _{1Limit}	min ⁻¹	16000	14000	9500	8000	1	
			16000	16000	14000	9500	2	

Drawing corresponds to a WPSFN090 / 1-stage / flange output hollow shaft with dowel hole / 19 mm clamping system / motor adaptation – 2-part – round universal flange / B5 flange type motor

All other variants can be retrieved in the Tec Data Finder at: ${\bf www.neugart.com}$

Geometry*			WPSFN064	WPSFN090	WPSFN110	WPSFN140	Z ⁽¹⁾
Pitch circle diameter output shaft	D11		31.5	50	63	80	
Centering diameter output flange	D13	h7	64	90	110	140	
Flange diameter output	D14		86	118	145	179	1
Pitch circle diameter output flange	D17		79	109	135	168	
Hollow shaft diameter	D24	M7	17	25	35	50	1
Total length	L1		104.5	132.0	153.5	201.5	1
	LI		122	139.5	154	224	2
Output flange length	L13		19.5	30	29	38	


- * Dimensions in mm
- (1) Number of stages
- (2) Other (sometimes higher) values following changes to T_{2N}, F_r, F_a, cycle, and service life of bearing.
 - Application specific configuration with NCP www.neugart.com
- (3) The ratio-dependent values can be retrieved in Tec Data Finder www.neugart.com
- (4) Sound pressure level from 1 m, measured on input running at $n_1 = 3000$ rpm no load; i = 5
- (5) Based on the end of the output shaft
- $^{(6)}$ $\;\;$ These values are based on an output shaft speed of $\rm n_2 = 100 \; rpm$
- 30,000 rotations of the output shaft permitted
- Permitted 1000 times
- Application-specific speed configurations with NCP www.neugart.com

Large number of variants for any field

Our **WPSFN** is extremely light and easy to integrate thanks to its standardized flange interface. It achieves optimized synchronization with the spiral gearing and the helical-toothed planetary stage for the best surface qualities. The shortest right angle precision gearbox with integrated hollow shaft provides you with new structural solutions.

The product code shows the numerous variants of the WPSFN. You can select the gearbox variant most suited to your requirements.

Neugart's **Tec Data Finder** allows you to very easily configure your right angle planetary gearbox with flange output shaft an hollow shaft. The product code helps you to quickly and directly request a quote.

Use **Tec Data Finder** to easily generate all the relevant information about your gearbox online. This includes the specific and geometrical data in the form of a dimension sheet as well as the CAD models in all of the usual formats.

The **NCP** configuration software enables you to determine the optimum motor-gearbox combination for your application with the relevant dynamics data and loads. A huge number of possible applications and over 12,000 motors are available to you.

Do you still have unanswered questions or want more information?

We would be happy to advise on all matters relating to drive technology.

You can find your local sales contact at www.neugart.com

Neugart USA Corp.

14325 South Lakes Drive Charlotte, NC 28273

USA

Phone: +1 980 299-9800 Fax: +1 980 299-9799 Email: sales@neugartusa.com

Neugart Planetary Gearboxes (Shenyang) Co., Ltd.

No.152, 22nd road

E&T Development Zone Shenyang, PC 110141

PR China

Phone: +86 24 2537-4959
Fax: +86 24 2537-2552
Email: sales@neugart.net.cn

Neugart GmbH

Keltenstraße 16 77971 Kippenheim Germany

Phone: +49 7825 847-0
Fax: +49 7825 847-2999
Email: sales@neugart.com