

World Class Bearing Technology

deva.glide[®] sliding bearings Maintenance-free, self-lubricating

OEVA

deva.glide®

High performance material – Bronze bearing with solid lubrication pockets

Contemporary designs represent an enormous challenge for modern-day bearing materials. Zero maintenance is often expected under severe to extreme conditions as well as under maximum loads. The constant pressure on costs also calls for increasing uptime of machinery and equipment and uncompromising standards of operational reliability. deva.glide materials are suitable for applications involving sustained high static and dynamic loads, relatively low sliding speeds and rotary, angular, axial or linear motion. They are also suitable for applications where conventional lubrication is not possible or permissible, or where other properties are required such as durability and resistance to operational and environmental influences or special conditions (e.g. impact load, abrasive stress, etc).

The current version of this handbook can be found on our website. – © Federal-Mogul DEVA GmbH

Our bearing service

- Profit from more than 60 years of experience in selflubricating sliding bearings.
- Make use of our extensive material and application expertise spanning a very wide range of industries.
- Let our application engineering team assist you in the:
 - selection of the bearing materials,
 - design, purpose-built to your requirements,
 - assembly and installation,
 - calculation of estimated life time.
- Benefit from the latest material developments, tested using state of the art facilities.

- Ask for a simulation of your bearing application on our test rigs.
- Expect the highest quality standards, certified to DIN ISO 9001:2008, ISO/TS 16949:2009 and DIN EN ISO 14001:2004.

Content

		page
_		
1	Materials	4
2	Material structure	4
3	Material properties	6
4	Mating Materials	9
5	Fits	10
6	Design	11
7	Installation	13
8	Recommended dimensions	14
9	Data relevant to the design of DEVA [®] bearings	18

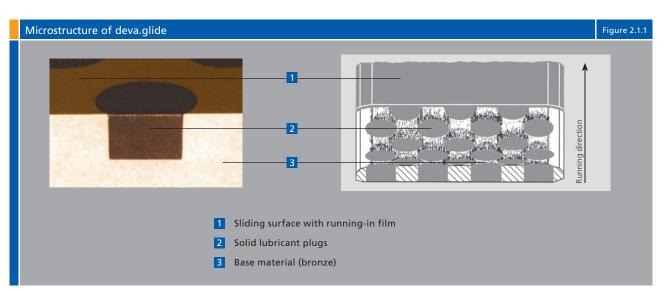
FEDERAL-MOGUL POWERTRAIN

Materials

1

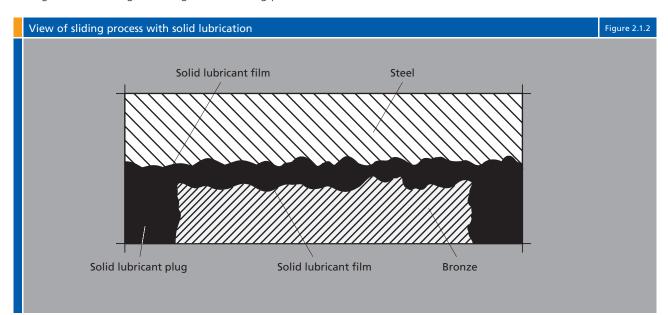
deva.glide[®]

- allows maintenance-free operation due to the solid lubricant content of the sliding material.
- can accomodate high static and dynamic loads.
- has a consistently low coefficient of friction without stick-slip effects.
- is resistant to dirt, corrosion, impact stress and edge loading.
- is provided with a vibration absorbing base material.
- can be used over a large temperature range.
- can be used in salt water.
- does not absorb water and guarantees maximum dimensional accuracy.


- is electrically conductive. No electrostatic charging effects occur.
- tolerates a high level of misalignment.
- can also be used in applications involving additional, conventional lubrication.

2

Material structure


2.1 deva.glide materials

deva.glide materials consist of highly wear-resistant copper cast alloys showing sliding surfaces with evenly provided solid lubricant plugs according to the socalled "macro distribution" principle. These plugs are arranged according to the movement requirements. The high density of the bronze guarantees high stability under load coupled with good dirt particle embedding properties into the lubricant plugs. Under dry running conditions, **deva.glide** is supplied with a 10 - 20 μ m thick running-in film which supports the formation of an initial transfer film on both sliding surfaces. The thickness of the running-in-film is not considered in any bushings bore tolerance because it will be consumed during the running-in-period.

In conventionally lubricated bronze materials a "separating lubricating film" can only be formed if the movement conditions and sliding speeds are suitable. With deva.glide, the lubrication is provided by the sliding material itself. The solid lubricant is released from the bearing material by micro abrasion as soon as the sliding movement begins. This gives the sliding partners smooth surfaces with a firmly adhesive solid lubricant film. The solid lubricant remains within the contact zone even under heavy loads, resulting in a high degree of separation between the sliding surfaces and a sustained low coefficient of friction coupled with minimal wear.

2.2 Solid lubricants plugs

The **deva.glide** material system relies on solid lubricants with optimum film-forming properties, adhesive power, surface affinity and corrosion resistance. **deva.glide** uses two standard solid lubricants. There are also additional variations available for special applications. In particular, the high-purity natural graphite used in the system is not chemically pretreated and therefore no source for any electrolytic and chemical activity originating in the materials due to its inert property.

Solid lubricants plugs		Table 2.2.1			
	Base				
dg 12	Graphite and additives				
dg 16	PTFE and additives				

Material properties

3.1 Composition and properties

Compo	sitio	n and pr	operties o	of deva.glide®											
	dg	DIN EN	Mat. no.	Designation	ASTM sta	andard	Propor. w	veiahts	Physical	propertie	s of the k	base bronz	e (min.) ²⁾		
				delivery form ¹⁾	standard	Alloy no.	DIN EN 1982	ASTM	Density	Linear coefficient of thermal expansion 20 - 200 °C	0.2% Strain	Tensile strength	Strain	E-modulus ²⁾	Hardness
Symbol Unit							%		ρ g/cm³	α ₁ 10 ⁻⁶ /Κ	R _{p0.2} MPa	R _m MPa	%	MPa	НВ
	01	1982	CC493K (former 2.1090)	CuSn7Zn4Pb7-C-GS CuSn7Zn4Pb7-C-GZ CuSn7Zn4Pb7-C-GC	B 584 B 271 B 505	C932 00 C932 00 C932 00	Cu 81.0 - 85.0 Ni max. 2.0 P max. 0.1 Pb 5.0 - 8.0 Sn 6.0 - 8.0 Zn 2.0 - 5.0 permissible max. additions Al 0.01 Fe 0.2 Sb 0.3 Si 0.01	Cu 81 - 85 Sn 6.3 - 7.5 Zn 2 - 4 Pb 6 - 8 Nb 6 - 8 Sb0.35	8.83	18.3	120 180 120	230 260 260	15 12 12	106.000 106.000 106.000	60 70 70
	02	1982	CC482K (former 2.1061)	CuSn11Pb2-C-GS CuSn11Pb2-C-GZ CuSn11Pb2-C-GC	B 584 B 271 B 505	C925 00 C925 00 C925 00	Cu 83.5 - 87.0 Ni max. 2.0 P max. 0.40 Pb 0.7 - 2.5 Sn 10.0 - 12.5 Zn max. 2.0 permissible max. additions Al 0.01 Fe 0.20 Mn 0.20 S 0.08 Sb 0.20 Si 0.01	Cu 85 - 88 Sn 10 - 12 Pb 1 - 1.5 Ni 0.8 - 1.5	8.75	17.2	130 150 150	240 280 280	5 5 5	112.000 112.000 112.000	80 90 90
	03	1982	CC333G (former 2.0975)	CuAl10Fe5Ni5-C-GS CuAl10Fe5Ni5-C-GM CuAl10Fe5Ni5-C-GZ CuAl10Fe5Ni5-C-GC	B 584 B 30 B 271 B 505	C955 00 C955 00 C955 00 C955 00	Cu 76.0 - 83.0 Al 8.5 - 10.5 Fe 4.0 - 5.5 Mn max. 3.0 Ni 4.0 - 5.5 permissible max. additions Bi 0.01 Cr 0.05 Mg 0.05 Pb 0.03 Si 0.10 Si 0.10 Zn 0.50	Cu min. 78 Al 10 - 11.5 Ni 3 - 5.5 Fe 3 - 5 Mn max. 3.5	7.60	16.5	250 280 280 280	600 650 650 650	13 7 13 13	122.000 122.000 122.000 122.000	140 150 150 150
	04	1982	CC762S (former 2.0598)	CuZn25Al5Mn4Fe3-C-GS CuZn25Al5Mn4Fe3-C-GM CuZn25Al5Mn4Fe3-C-GZ		C863 00 C863 00 C863 00	Cu 60.0 - 67.0 Zn rest Al 3.0 - 7.0 Mn 2.5 - 5.0 Fe 1.5 - 4 permissible max. additions Ni 3.00 Pb 0.20 Sn 0.20 Si 0.10 P 0.03 Sb 0.03	Cu 60 - 66 Al 5 - 7.5 Fe 2 - 4 Mn2.5 - 5 Zn 22 - 28 Ni max. 1	8.20	18.0	450 480 480	750 750 750	8 8 5	115.000 115.000 115.000	180 180 190
	05	1982	CC483K (former 2.1052)	CuSn12-C-GS CuSn12-C-GZ CuSn12-C-GC	B 584 B 271 B 505	C908 00 C908 00 C908 00	Cu 85.0 - 88.5 Ni max. 2.0 P max. 0.6 P max. 0.7 Sn 11.0 - 13.0 permissible max. additions Al 0.01 Fe 0.20 Mn 0.20 S 0.05 Sb 0.15 Si 0.01 Zn 0.05	Cu 89 Sn 10 - 13 Pb 0.5 Ni 0.5	8.72	18.1	140 150 150	260 280 300	7 5 6	110.000 110.000 110.000	80 90 90

¹⁾ delivery form: GS = sand casting, GM = gravity casting, GC = continuous casting, GZ = centrifugal casting

2) Referred to base bronze

											Table 3.1.1
Bearing prope	erties									dg	
Max. permissible load		Max. sliding velocity	Max. pU value	Temperature range		Coeficient of friction ⁴⁾		Min. shaft hardness	Shaft surface finish		
[static] ³⁾	[dynamic] ³⁾	[dry]	[dry]	[max]	[min]	[dry]	[in water]		[optimum]		
p _{stat/max}	P _{dyn/max}	U _{max}	p U _{max}	T _{max}	T _{min}	f	f		R _a		Symbol
MPa	МРа	m/s	MPa × m/s	°C	°C			НВ	μm		Unit
140	60	0.4	1.0	250	-100	0.10 - 0.12	0.08 - 0.12	180	0.2 - 0.8	01	
175	100			250	100			100			
175	100	0.4	1.0	250	-100	0.10 - 0.12	0.08 - 0.12	180	0.2 - 0.8	02	
300	180	0.4	1.5	250	-100	0.10 - 0.13	0.08 - 0.12	300	0.2 - 0.8	03	
340	120	0.4	1.5	250	-100	0.12 - 0.15	0.08 - 0.12	300	0.2 - 0.8	04	
175	100	0.4	1.0	250	-100	0.10 - 0.12	0.08 - 0.12	180	0.2 - 0.8	05	

³⁾ It is recommended that the Application Engineering department of F-M DEVA is consulted after each preselection.

⁴ The stated sliding friction coefficients are not guaranteed properties. They have been determined on our test rigs using field-proven parameters that do not necessarily reflect the actual application of our products and their service environment. We offer customer-specific friction and wear tests on request.

3.2 Chemical resistance

The following decision chart provides guidance on the selection of the appropriate deva.glide® alloy according to the environmental conditions of the application.

Definitions

- Resistant
- ✓ Resistant
 O Resistant depending on construction, oxygen content, temperature, etc.
- × Not recommended _ No data available

Chemical resiductance International procession (non-sectional procession) Temporoname (sectional procession) Alloy adaption (sectional procession) dapp1 dapp2 dapp3 dapp3 <th></th> <th></th> <th></th> <th>-</th> <th>No data available</th> <th></th> <th></th> <th></th>				-	No data available			
chemical substance in Yé decayable digo digo1 digo2 digo3 digo3 digo3 digo3 Streng.add S 00 × x x x Higher Bine and System 2 S 00 × x x x x Higher Bine and System 2 S 00 × x x x x Higher Bine and System 2 S 00 × x x x x Hyder Bine and Siste a	Chemical resistant	ce of deva.glide						Table 3.2.1
degreedegre				Alloys deva.glide				
sydordional deprindication320XXXXNNetwordional deprindication520XXXXXXPrescheric construction520XXXXXXPrescheric construction520XXXXXXPrescheric construction520XXXXXXXPrescheric construction520XXXXXXXPrescheric construction520XXXXXXXXPrescheric construction520XX </th <th></th> <th></th> <th></th> <th></th> <th>dg02</th> <th>dg03</th> <th>dg04</th> <th>dg05</th>					dg02	dg03	dg04	dg05
sydordional deprindication320XXXXNNetwordional deprindication520XXXXXXPrescheric construction520XXXXXXPrescheric construction520XXXXXXPrescheric construction520XXXXXXXPrescheric construction520XXXXXXXPrescheric construction520XXXXXXXXPrescheric construction520XX </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
hyderodinar of sites and site	-							
Nitricadid520××× <th< td=""><td></td><td></td><td></td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td></th<>				×	×	×	×	×
Subprincicad520o··NNNMeak aids520NVVNVVAceix exid520X·VXXVBoir acid520X·VXXVBoir acid520X·VXXVBoir acid520X·VXXVBoir acid520XVVXVVBoir acid520XVVXVVBoir acid520XVVXVVBoir acid1020XVVXVVBoir acid1020XVVXVVBoir acid200VVVVVVCorbon tertacion200VVVVVVBoir acid200VVVVVVVBoir acid200VVVVVVVBoir acid200VVVVVVVVBoir acid200VVVVVVVVVVVVVVVVVVVVV <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
Prosphere card5200·····Weak cidid520×·······Formic add520×··<								
Next acidsNote of the sector of t								
ActencyS20XVVXVBoric acid520XVVXVBoric acid520XVVXVCrin acid520XVVXVCrin acid520XVVXVArmonia1020XXXXXArmonia1020XVVXXSolam Mydroxide5200VV0VActone5200VV0VSolam Mydroxide5200VV0VActone200VV0VVCaton tetschoride200VV0VEthyl catal200VV0VVEthyl catal200VV0VVSalt200VV0VVVCaton tetschoride200VV0VVSalt200VV0VVVSalt200VV0VVVSalt200VVVVVVSalt200VVVVVVSalt20V<	Phosphoric acid	5	20	0	✓	~	×	•
Serie acidS20x···x··x···								
prote and Citric acid520x···x··BaseIII<								
Citric add520x··xxxxBaseImamola1020xxxxxxxSadamolaS200···0··xSatasun hydraxideS200···0··xx								
Base:Image: stateImage: stateImage: stateImage: stateImage: stateImage: stateAmmonia10200''''''''Potassum hydroxide5200''''''''Solverit200''''''''''Acetone200''''''''''Acetone200''''''''''Cation tetrachlorde200''''''''''Ethyl Acetone200''''''''''''Ethyl Acetone200''								
Anmonia1020xxxxxxxSodium/hydroideS200''0''0Patassiun /ipdroideS200''0''0'Solvents100''0''0'''0'''0''' <td>Citric acid</td> <td>5</td> <td>20</td> <td>×</td> <td>↓ ✓</td> <td>√</td> <td>×</td> <td>~</td>	Citric acid	5	20	×	↓ ✓	√	×	~
Sodum hydroxideS200-'-'0-'Batemin hydroxideS200-'NNNSolents200-'-'0-'Carbon cltrachioride200-'-'0-'Ethy clande200-'-'0-'Carbon cltrachioride200-'-'0-'Ethy clande200-'-'0-'Cycein200-'-'0-'-'Site100-'-'0-'-'Ammonium nitrate11111111Ammonium nitrate11111111Ammonium nitrate11111111Magnetium subjete111 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Potassium hydroxide520•······Solvents Acetone200··<								
Solvents Image Image Image Image Image Image Acetone 20 0 ' ' 0 ' Carbon tetrachloride 20 0 ' ' 0 ' Ethy aleatae 20 0 ' ' 0 ' Ethy aleatae 20 0 ' ' 0 ' Glycerin 20 0 ' ' 0 ' Ammonin intrate 20 0 ' ' 0 ' Ammonin intrate 1 ' ' ' ' ' ' Calcium chloride 1 '								
Acetone200··0··Carbon tetrachloride200··0··0··0··100··100··100··100··100··100··100··100··100··100··100··100·100·100·100·100·100·100·100100·100·100100·100100100·100<	Potassium hydroxide	5	20	0	✓	✓	0	\checkmark
Carbon etrachloride Ethand200	Solvents							
Ethanol Ethy letoide Ethy letoide City enn2000Sals Ammonum nitrate Calcum choide Calcum choide Calcum choide11	Acetone		20	0	✓	\checkmark	0	\checkmark
Ethyl actate Ethyl actate Glycerin200 \checkmark \checkmark 0 \checkmark Glycerin200 \checkmark \checkmark 0 \checkmark Salts200 \checkmark \checkmark 0 \checkmark Ammonium initate Calcum chloride111111Ammonium initate Calcum chloride1 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark Magnesium chloride Sodium chloride11111111Sodium chloride Sodium chloride111111111Sodium chloride Sodium chloride111<	Carbon tetrachloride		20	0	✓	\checkmark	0	\checkmark
Ethylchloride Glycrin200	Ethanol		20	0	✓	\checkmark	0	\checkmark
GlycerinImage: state in the stat	Ethyl acetate		20	0	~	~	0	✓
SaitsImage				0			0	\checkmark
Anmonuin nitrate Calcium chlorideNNNNNMagnesium chloride <td< td=""><td>Glycerin</td><td></td><td>20</td><td>0</td><td>✓</td><td>✓</td><td>0</td><td>✓</td></td<>	Glycerin		20	0	✓	✓	0	✓
Calcium chloride··· <td>Salts</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Salts							
Magnesium sulphateMagnesium sulphateImage sulphate <t< td=""><td>Ammonuim nitrate</td><td></td><td></td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td></t<>	Ammonuim nitrate			×	×	×	×	×
Magnesium sulphate	Calcium chloride			1	 ✓ 	✓	✓	✓
Sodium chloride Sodium nitrateImage: solution nitrate Sodium nitrateImage: solution nitrate Solution nitrate Solution nitrateImage: solution nitrate Solution nitrateImage: solution nitrate Solution nitrateImage: solution nitrate Solution nitrate Solution nitrateImage: solution nitrate Solution nitr	Magnesium chloride			✓	~	~	✓	0
Sodium nitrate Zinc chlorideImage: constraint of the second seco				✓	✓	\checkmark	\checkmark	0
Zinc chloride Zinc sulfateMath ChlorideMath 								
Zinc sulfateImage: style styl								
GasesImage: second								
AnmoniaImage: sequence of the sequenc	Zinc sulfate			0	✓	✓	0	✓
ChlorineImage: style st	Gases							
Carbon dioxideImage: constraint of the second s				0	0	0	0	0
FluorineImage: stand st								
Sulphur dioxideImage: sulphideImage: sulphid								
Hydrogen sulphideIntrogenIntrode <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
NitrogenImage of the second secon								
HydrogenImage: second seco								
Fuels and lubricantsImage: second				1				
Paraffin20Image: scale in the scale								
Petroleum20 \checkmark \checkmark \checkmark \checkmark \checkmark Fuel oil20 \checkmark \checkmark \checkmark \checkmark \checkmark Diesel fuel20 \checkmark \checkmark \checkmark \checkmark \checkmark Mineral oil70 \checkmark \checkmark \checkmark \checkmark \checkmark HFA - ISO46 water-in-oil70 \checkmark \checkmark \checkmark \checkmark HFC - water-glycol70 \checkmark \checkmark \checkmark \checkmark HFD - phosphate ester70 \checkmark \checkmark \checkmark \checkmark Others111 \checkmark \checkmark \checkmark Water20 \checkmark \checkmark \checkmark \checkmark \checkmark Seawater120 \bullet \checkmark \checkmark \checkmark			20	1				1
Fuel oil20Image: style sty				1				
Diesel fuel20 \checkmark \checkmark \checkmark \checkmark \checkmark Mineral oil70 \checkmark \checkmark \checkmark \checkmark \checkmark HFA - ISO46 water-in-oil70 \checkmark \checkmark \checkmark \checkmark \checkmark HFC - water-glycol70 \checkmark \checkmark \checkmark \checkmark \checkmark HFD - phosphate ester70 \checkmark \checkmark \checkmark \checkmark \checkmark Others111 \checkmark \checkmark \checkmark \checkmark Water20 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark								
Mineral oil707777HFA - ISO46 water-in-oil707777HFC - water-glycol707777HFD - phosphate ester707777Others7077777Water2077777Seawater2097711								
HFA - ISO46 water-in-oilTOIIIIHFC - water-glycolTOIIIIIHFD - phosphate esterTOIIIIIOthersIIIIIIIWaterIIIIIIISeawaterIIIIIII								
HFC - water-glycol70 \checkmark \checkmark \checkmark \checkmark HFD - phosphate ester70 \checkmark \checkmark \checkmark \checkmark OthersImage: state sta								
HFD - phosphate ester70 \checkmark \checkmark \checkmark \checkmark OthersImage: state st								
Water 20 \$\scrime\$ \$\scrim\$ \$\scrim\$ \$\scrime\$ </td <td>HFD - phosphate ester</td> <td></td> <td>70</td> <td></td> <td></td> <td></td> <td></td> <td></td>	HFD - phosphate ester		70					
Water 20 \$\scrime\$ \$\scrim\$ \$\scrim\$ \$\scrime\$ </td <td>Others</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Others							
Seawater 20 O V V K V			20	1	1	1	0	1
	Resin			 ✓ 	1	~	0	\checkmark

√

~

o

√

√

Hydrocarbon

Mating material

In order to obtain a suitable surface finish it is also possible to use shaft sleeves of a suitable hardness. With restrictions hard-facing or galvanic protective layers (normally coated, hard-chromium-plated or nickel-plated) are thinkable. But be aware that any applied galvanic layer "softens" the surface roughness structure. The required corrosion protection of the mating material is determined by actual operating conditions. The djacent table provides an overview of some of the possible mating materials.

Recommended mating materials for standard applications									
Material number	DIN designation	Comparable standards							
	USA – ANSI GB – B.S. 9 70 F – AFNOR								
1.0543	St 60-2	Grade 65	55C	A60-2					
1.0503	C45	1045	080M46	CC45					
1.7225	42CrMo4	4140	708M40	42CD4					

Recommended mating materials for corrosive environments Table											
Material number	Material number DIN designation Comparable standards										
		USA – ANSI	GB – B.S. 9 70	F – AFNOR							
1.4021	X20Cr13	420	420537	Z20C13							
1.4057	X17CrNi-16-2	431	432529	Z15CN16.02							
1.4112	X90CrMoV18	440B	-	(Z70CV17)							
1.4122	X35CrMo17-1	-	-	-							

Recommended mating materials for seawater applications Table 4									
Material number	DIN designation	Comparable standards							
		USA – ANSI	GB – B.S. 9 70	F – AFNOR					
1.4460	X3CrNiMoN27-5-3	329	-	-					
1.4462	X2CrNiMoN22-5-3	UNS531803	318513	Z3CND24-08					
2.4856	Inconel 625	-	-	-					

Fits and tolerances for reliable operation

For sliding bearings with an outer diameter D_1 greater than 500 mm the fits must be determined according to the actual requirements. For this purpose please contact

our technical department. The subsequent proposals are valid for sliding bearings with a diameter D_1 smaller than 500 mm.

Reliable fits and tolerances for deva.glide®		Table 5.1
Description	Tolerance	
 Housing bore	H7	
Outer diameter of bearing < 200 mm under normal operating conditions (t \approx 80° C) \geq 200 mm	s6 r6	
Bearing bore prior to installation into housing	E7	
Bearing bore after installation into housing (approx. within) The press-fit leads to a contraction of the bearing bore from E7 to H9	Н9	
Tolerance of bearing length	average	
Surface finish standard of housing bore	(ISO:N8) R _a to 3.2 µm	
Surface finish standard of shaft, ground	R _a 0.2 to 0.8 μm	
Tolerance of shaft: under normal operating conditions (t < 80° C)	c8 / d8	

deva.glide bearings are installed into the housing with interference or supercooling. The housing bore should have a **H7** tolerance with an average roughness of $R_a = 3.2 \mu m$. To facilitate bearing installation, the housing bore should

be provided with a lead in chamfer of 1 mm x 15° to 20°. Depending on the application, customised fits and tolerances are possible. Please contact our technical department.

Design

In order to ensure proper operation of the sliding bearing and to prevent the counter surface from damaging the sliding surface, the mating surface should be free of flats and grooves and should always extend beyond the bearing surface.

deva.glide[®] bearings can tolerate misalignment to a certain extent. Nevertheless the shaft and housing should

be correctly aligned for optimum running conditions. In cases of lateral thrust due to axial forces, the **deva.glide** flanged bearing is likely to be the most economic solution for small dimensions. With larger diameters, on the other hand, the combined use of a **deva.glide** bearing with an additional **deva.glide** thrust washer can provide an economic alternative.

Bearing design

Plain bearing

Flanged bearing

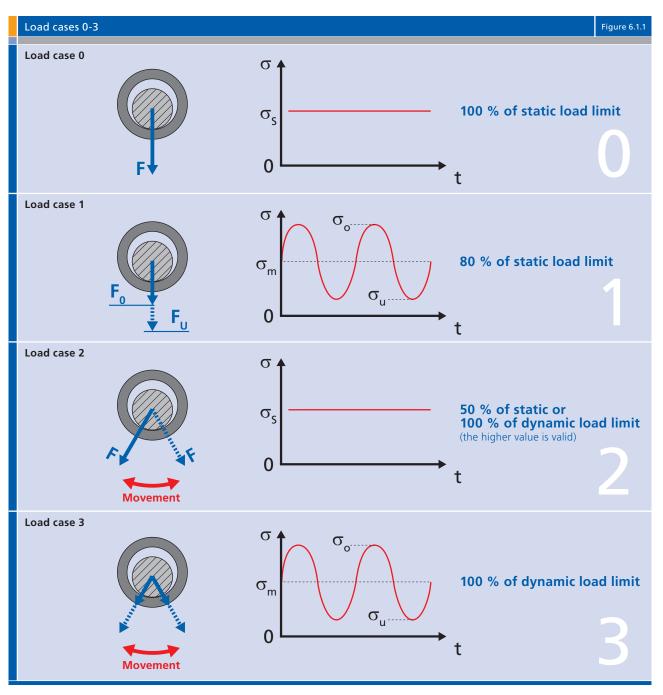
Half-shells

Thrust washer

Spherical bearing, floating

Axial and radial bearing segments

Spherical bearing, fixed

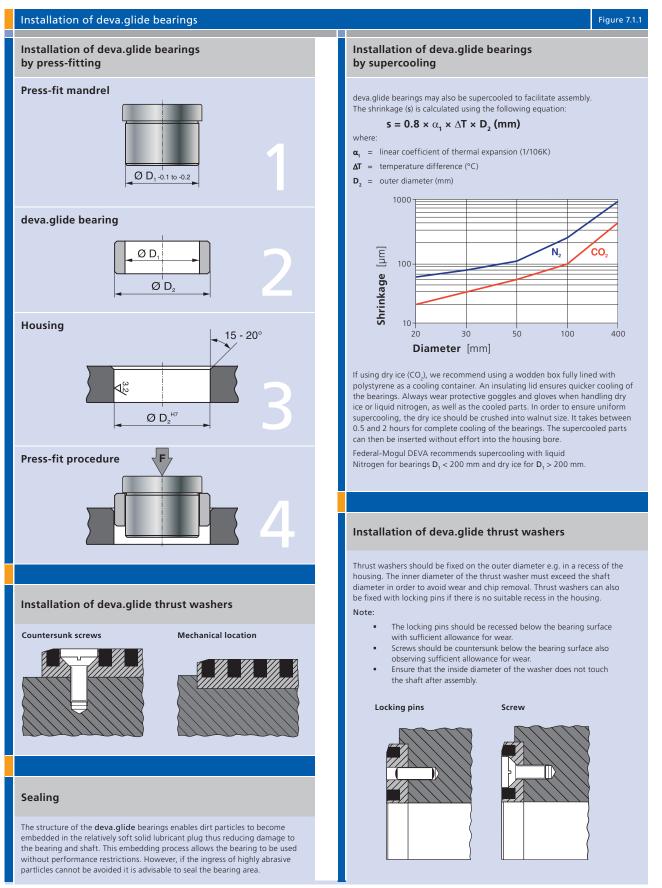

Sliding plate

The illustrated **deva.glide** sliding bearings are shown without a running-in film.

6.1 Description what values to be considered for design

DEVA® differentiates load cases (0 to 3) regarding the character of load stressing a bearing. This is to consider fatigue influences in case of dynamic pressure. The percentage values are referring to the limit values described in the material data sheet or technical handbooks.

This worksheet is related to **DEVA** work instruction A 616 (see also "Qualitäts-, Umwelt- und Arbeitsschutz-Management Handbuch, Verfahrensanweisungen + Arbeitsanweisung").



Installation

7.1 Press-fitting of deva.glide® radial bearings

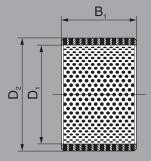
Recomended dimensions

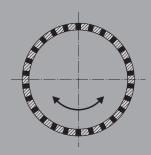
Recor	nmeno	ded dir	nensio	ns dev	a.glide	®											Ta	able 8.1
Plain b	bearing	. radial			Flange	ed beari	ina			Thrust	t washe	r	Spher	ical bea	aring			
	D ₂		B ₁		D ₁	D ₂	D ₃	S _F	B ₁	D _s	D ₆	S _T			D _K	D ₂	B ₁	B _F
50	60	50	35	65	50	60	80	5.0			80	5.0						
55	65	55	40	70	55	65	85	5.0			85	5.0						
60	75	60	45	75	60	75	90	7.5			90	7.5						
65	80	65	45	80	65	85	95	7.5			95	7.5						
70	85	70	50	85	70	85	100	7.5			100	7.5						
75	90	75	55	90	75	90	105	7.5			105	7.5						
80	95	80	60	100	80	95	110	7.5			110	7.5						
85	100	85	60	105	85	100	115	7.5			115	7.5						
90	105	90	65	115	90	105	120	7.5			120	7.5						
95	115	95	70	120	95	115	125	10.0			125	10.0						
100	120	100	75	125	100	120	140	10.0			140	10.0		100	130	150	70	55
110	130	110	80	140	110	130	150	10.0			150	10.0	100	110	140	160	70	55
120	140	120	90	150	120	140	160	10.0			160	10.0	110	120	160	180	85	70
140	160	140	100	175	140	160	180	10.0			180	10.0	120	140	180	210	90	70
150	170	150	110	185	150	170	190	10.0			190	10.0	140	100	200	220	105	0.0
100	205	100	135	225	180	205	230	12.5	est.	185	220	12.5	140	160 180	200 225	230 260	105 105	80 80
180 200	205	180 200	135	225	200	205 225	230	12.5	aue	205	230 250	12.5	160 180	200	225	200	105	100
200	225	200	150	250	200	225	250	12.5	On request.	205	250	12.5	200	200	250	320	130	100
225	250	225	170	280	225	250	275	12.5	On	230	275	12.5	200	220	275	520	155	100
225	250	225	170	200	225	230	275	12.5		250	275	12.5	220	240	300	340	140	100
250	278	250	190	315	250	278	300	14.0		255	300	14.0	220	240	300	340	140	100
230	270	250	150	515	250	270	500	14.0		255	500	14.0	240	260	325	370	150	110
280	310	280	210	350	280	310	340	15.0		285	340	15.0	260	280	350	400	155	120
300	332	300	225	375	300	332	360	16.0		305	360	16.0	280	300	375	430	165	120
													300	320	380	440	160	135
													320	340	400	460	160	135
350	385	350	260	435	350	385	420	17.5		355	420	17.5						
													340	360	420	480	160	135
													360	380	450	520	190	160
400	440	400	300	500	400	440	480	20.0		405	480	20.0	380	400	470	540	190	160
													400	420	490	560	190	160
													420	440	520	600	218	185
450	495	450	340	580	450	495	530	22.5		455	530	22.5						
													440	460	540	620	218	185
													460	480	565	650	230	185
500	550	500	375	625	500	550	600	25.0		510	600	25.0	480	500	585	670	230	195
													500	530	620	710	243	205
550	605	550	415	690	550	605	650	25.0		560	650	25.0						
													530	560	655	750	258	215
600	660	600	450	750 ¹⁾	600	660	720	25.0		610	720	25.0	560	600	700	800	272	230
650	745	650	400	0451)	650	745	700	25.0			700	25.0	600	630	740	850	300	260
650	715	650	490	815 ¹⁾	650	715	780	25.0		660	780	25.0	620	670	795	900	200	260
700	770	700	525	875 ¹⁾	700	770	840	25.0		710	840	25.0	630	670	785	900	308	260
700	770	700	525	0/5"	700	//0	640	23.0		710	640	23.0	670	710	830	950	325	275
750	825	750 ¹⁾	560	940 ¹⁾	750	825	900	25.0		760	900	25.0	710	750	875	1000	335	275
800	880	8001)	600	1000 ¹⁾	800	880	960	25.0		810	960	25.0	750	800	930	1060	355	300
850	935	850 ¹⁾	640	10601)	850	935	1020	25.0		860	1020	25.0	800	850	985	1120	365	310
900	990	900 ¹⁾	675	1125 ¹⁾	900	990	1020	25.0		910	1020	25.0	850	900	1040	1180	375	320
950	1045	950 ¹⁾	710 ¹⁾	12001)	950	1045	1140	25.0		960	1140	25.0	900	950	1100	1250	400	340
1000	1100	1000 ¹⁾	750 ¹⁾	1250 ¹⁾	1000	1100	1200	25.0		1010	1200	25.0	950	1000	1160	1320	438	370
1200	1320	20001)	900 ¹⁾	1500 ¹⁾	1200	1320	1440	25.0		1210	1440	25.0						
1) Length	of bearing :	subdivided (.	2 x 0.5) for	production i	reasons.													
- Eurthor ci																		

Further sizes available on request.

Plain bearing, radial

Standard version

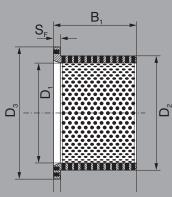

 $\emptyset D_1 \leq 500 \text{ mm}$

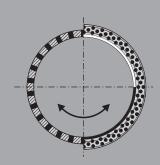

The direction of movement determines the arrangement of the lubrication plugs.

All **deva.glide** bearings can be provided with a running-in film (not shown in order to give a clearer view).

Note:

In the standard version $\emptyset D_1 > 500$ mm and special versions, solid lubricant plugs are introduced into blind holes if required.

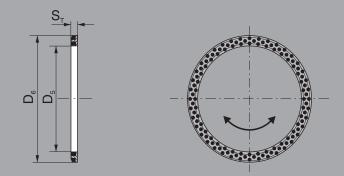

Flanged bearing


For $\partial D_1 > 150$ mm, it may be advantageous to use a combination of plain bearing and thrust washer (subject to consultation with DEVA®).

The direction of movement determines the arrangement of the lubrication plugs.

All **deva.glide** bearings can be provided with a running-in film (not shown in order to give a clearer view).

The flange will be provided with solid lubricant plugs only if demanded by the operating conditions.

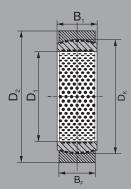

Thrust washer (axial bearings)

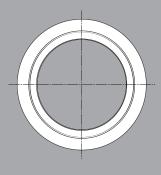
Standard version $\&D_5 > 150 \text{ mm}$

Special version $\&D_5 \leq 150 \text{ mm}$

The direction of movement determines the arrangement of the lubrication plugs.

All **deva.glide**[®] bearings can be provided with a running-in film (not shown in order to give a clearer view).

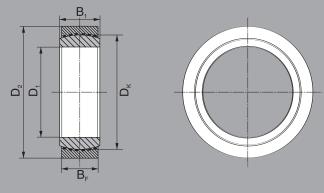



Spherical bearing

Floating bearing

The direction of movement determines the arrangement of the lubrication plugs.

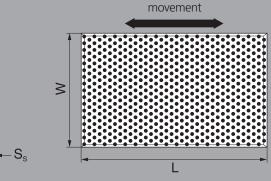
All **deva.glide** bearings can be provided with a running-in film (not shown in order to give a clearer view).



Spherical bearing

Fixed bearing

All deva.glide bearings can be provided with a running-in film (not shown in order to give a clearer view).


Sliding plates (slideways)

The direction of movement determines the arrangement of the lubrication plugs.

All deva.glide bearings can be provided with a running-in film (not shown in order to give a clearer view).

All dimensions on request.

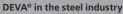
Data relevant to the design of DEVA® bearings

				Questionaire 9.1.A
Description of application				
Steel Industry Wind Energy Rubber and Plastic Industry	Steam and Gas Turbines Offshore and Marine Heavy-duty Vehicles	Railway Hydro Power Others		New design Existing design Project No.
Plain bearing	Flanged bearing	Thrust washer	Spherical bearing Ploating bearing Fixed bearing B1 B1 B1 B1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C	Sliding plate
Quantity Dimensions [mm] Inner diameter Outer diameter Bearing width Outer ring width Flange outer diameter Flange thickness Wall thickness Plate length Plate width Plate thickness	Item 1 Item 2 Item 1 Item 2 D1 (D3) Item 2 D2 (De) Item 3 B1 Item 4 D3 Item 5 S7 Item 5 L Item 5 W Item 5	Item 3 Item 3 Item 3 Item 3 Item 3 Item 3 Item 4 Item 4 Item 4 Item 4 Item 4 Item 5 Item 5 Item 5 Item 5 Item 5 Item 6 Item 7 It	m] eed [m/s] igth [mm] angle [°] / [n/min] (spherical bearing) [°] ig time us operation nt operation ration [%/h]	Item 1 Item 2 Item 3
Loading Static Dynamic Alternating Impact Radial load [kN] Axial load [kN] Surface pressure Radial [MPa] Axial [MPa]		Item 3 Frictional G Fits/tole Shaft Bearing ho Environn Temperatu Contact m Other influ	distance [km] rances ousing nental conditions ure at bearing redium	Item 1 Item 2 Item 3 Item 3 Item 4 It
Mating material Material no./type Hardness [HB/HRC] Roughness Ra [µm] Housing material Material no./type Lubrication Dry running Permanent lubrication Medium lubrication Medium Lubricant Initial lubrication Hydrodyn. lubrication Hydrodyn. lubrication	Item 1 Item 2 Item 1 Item 2		erson	Item 1 Item 2 Item 3 Item 1 Item 2 Item 3

		Questionaire 9.1.B
Remarks		
Certificate required (e.g. 3.1) Acceptance procedure (e.g. 3.2)	yes no	
Explaination		
Explaination	 * angle: According to DEVA® definition, one cycle is four times the angle β. This is the basis to calculate the expected sliding distance. Example: Bushing D₁ = 50 mm and agle β = 5° → 1 cycle shows a sliding distance of 8,73 mm 	

Notes

Notes


Portfolio

DEVA® in marine/offshore

DEVA® in heavy-duty

Industry solutions

deva.metal®

deva.bm®

deva.tex®

Product range

Product information

Disclaimer

The present technical documentation has been prepared with care and all the information verified for its correctness. No liability, however, can be accepted for any incorrect or incomplete information. The data given in the documentation are intended as an aid for assessing the suitability of the material. They are derived from our own research as well as generally accessible publications.

The sliding friction and wear values stated by us or appearing in catalogues and other technical documentation do not constitute a guarantee of the specified properties. They have been determined in our test facilities under conditions that do not necessarily reflect the actual application of our products and their service environment or permit comprehensive simulation in relation to them.

We provide guarantees only after written agreement of the test procedures and parameters and of all the relevant characteristics which the product is required to have.

All transactions conducted by DEVA are subject, in principle, to our terms of sale and delivery as indicated in our offers, product brochures and price lists. Copies are available on request. Our products are subject to a constant process of development. DEVA reserves the right to amend the specification or improve the technological data without prior notice.

DEVA®, deva.bm®, deva.bm®/9P, deva.metal®, deva.glide and deva.tex are registered trade marks of Federal-Mogul Deva GmbH, D-35260 Stadtallendorf, Germany.

Federal-Mogul DEVA GmbH Schulstraße 20 35260 Stadtallendorf/Germany

Phone +49 6428 701-0 Fax +49 6428 701-108

www.deva.de

www.federalmogul.com