

C-FLEX BEARING CO., INC.

THE LEADER IN FLEXING METAL TECHNOLOGY.

COUPLINGS

BUSHINGS

SUPERIOR TECHNOLOGY

LOWEST COST

ENVIRONMENTALLY FRIENDLY

C-Flex Bearing Co., Inc. is a privately owned small business located in upstate New York, incorporated since 1993. Under the current administration, we have been in business since 1988 however under different names. We began manufacturing turbine components for the gas turbine industry. In 1992, we generalized into basic machine shop work. In 1997, the three companies were merged into C-Flex Bearing Co., Inc. with the focus on our one product line, the frictionless bearing or pivot.

Current Capacity: 6200 square feet. 6000 square feet of manufacturing space with expansion property available.

C-Flex Suppliers:

We extend every effort to keep key processes in house in order to maintain the tightest control over quality and timeliness. With our increase in sales and in order to maintain stock levels on standard items, we are in constant review of production methods so as to best meet quality, quantity, and scheduling demands of our customers.

Quality and Testing:

Quality at C-Flex begins with the receipt of materials. All employees assume in-process responsibility for quality checks. Final quality verification prior to placement of components to inventory and shipment to the customer is under the control of our chief quality engineer.

C-FLEX BEARING CO., INC. 104 INDUSTRIAL DRIVE FRANKFORT, NY 13340 TEL: 315-895-7454

FAX: 315-895-7268

www.C-Flex.com

E-MAIL: cflex@C-Flex.com

C-FLEX realizes
the significance of
sustainability and our
products are produced
without harmful oils,
materials detrimental to
the environment.

PIVOT BEARINGS

The C-Flex bearing or "pivot" is a cylindrical, limited rotational bearing, with a high relative radial and axial stiffness which is available in low, medium, or high torsional spring rates. It is typically available for maximum deflection angles of +/-30°, but various configurations are supplied upon request. Torsional stiffness ranges from .0003 Lb-In/degree to 7.8023 Lb-In/degree. It can be used simply as an oscillating unit or an extremely sensitive critical element.

The advantages of cross-flexure bearings has been well documented in connection with the replacing of ball bearing pivots in optomechanical applications. One such application in which the C-Flex bearing has outperformed alternatives is the scanning mirror assembly of a mass spectometer. Here two mirrors are mounted on an assembly and laser beams are scanned across samples to be analyzed. The lubrication free, frictionless movement of the C-Flex bearings is ideal in applications such as this where the outgassing from bearing lubricants could contaminate the optics, and bearing wear due to continuous limited rotation would eventually result in movement errors.

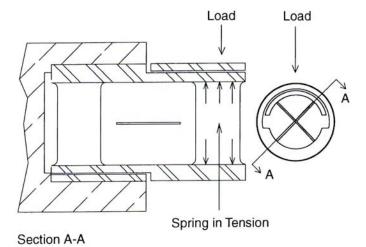
The bearing itself consists of two stainless steel sleeves held in position by three leaf springs

on two planes. There is no contact between the sleeves—eliminating friction, and the springs also provide the pivotal action which is inherently self centering and requires no lubrication or maintenance. The bearing is also available with an additional sleeve allowing for central mounting providing two pivotal arms (the double end bearing, sizes AD to JD).

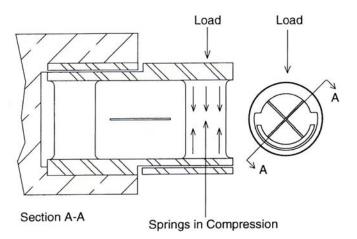
Other applications include those requiring accuracy without backlash, friction and wear such as gimbals or within gauge sensors where position must be accurately measured or outside forces sensed. Workhorse applications requiring the support of heavy loads for years of continuous service including mechanisms such as vibrating hoppers. Lever actuators and tensioners can also benefit from the use of these bearings. Optical/magnetic read/write heads also gain from the constant predictable spring rate-immune to the problems of starting vs. moving torque.

Free from backlash, friction and wear, the C-Flex bearing could provide the ultimate in cost effective design, allowing for easy assembly and indefinite life expectancies with undiminished accuracy. Selection of the correct bearing for the application loads expected should result in exceptional long life, even within the most arduous environment.

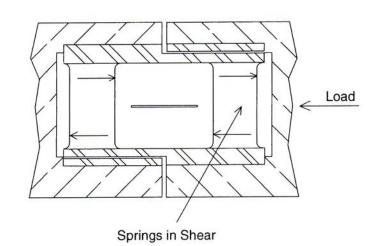
Custom designs for heavy loads (>1600 lbs.), special materials (e.g., Hast X, Titanium BeCu) or high volume/low cost can be provided.


INDEX

PIVOT BEARINGS	4
Loading	5
Bearing Size and Performance Properties	6
Bearings Double-End Bearing	7
Life Expectancy for Torsional Spring Rates	8
TECHNICAL DATA	9
Bearing Centershift	10
Radial and Axial Stiffness Properties	11
Hysteresis Curve Type 10 Bearing	12
Hysteresis Curve Type 20 Bearing	13
Hysteresis Curve Type 30 Bearing	14
COUPLINGS	15
English Lattice Coupling Specifications	16
English Lattice Servo Coupling Specifications	16
Metric Lattice Coupling Specifications	17
Coupling Performance Guide	18
English Superplastic Lattice Coupling Specs	19
English Superplastic Lattice Servo Coupling Specs	19
Metric Superplastic Lattice Coupling Specs	20
Metric Superplastic Lattice Servo Coupling Specs	20
PROGRESSIVE CLAMP BUSHINGS	21
Progressive Clamp Bushings Specifications	22

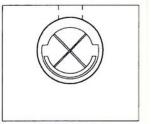


Loading Diagrams with Related Spring Stresses


Radial Loading: Spring in Tension (Lt)

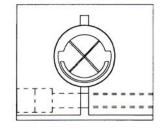
Radial Loading: Spring in Compression (Lc)

Axial Loading: Springs in Shear

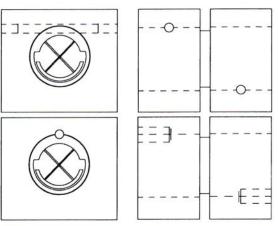


Suggested Methods for Installing C-Flex Bearings

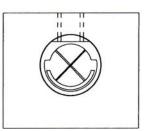
The following examples are a few of the possible methods for installing standard C-Flex bearings. Other techniques may provide satisfactory results. Special options, such as flanged or drilled and tapped sleeves may be provided upon request. Please contact C-Flex with questions or a review of mounting requirements.

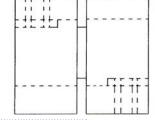

Set Screw

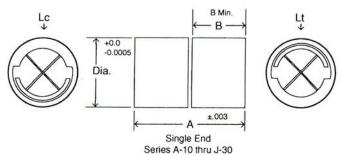
One or more properly sized cup point set screws may be used to clamp bearing in place. Hole size should be .0005" to .0010" larger than bearing.


Clamp Screw

Clamping screw applies suitable pressure to retain bearing in place. Hole size should be .0005" to .0010" larger than bearing.

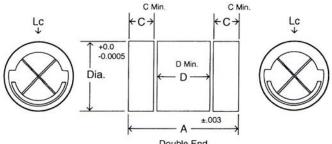

Radial or Axial Pins


Pins may be pressed into holes drilled through the mounting bracket and the bearing sleeve. Care must be exercised to orient the bearing properly so the springs are not damaged. Hole size should be .0005" to .0010" larger than bearing.


Locator Flats

Locator flats with cup point set screws may be used to orient and securely clamp bearing in place. Hole size should be .0005" to .0010" larger than bearing.

C-Flex Bearings Size and Performance Properties



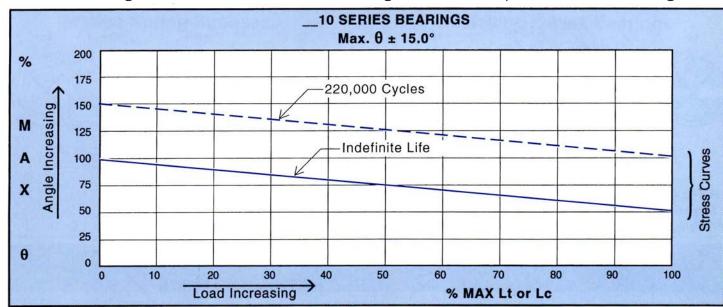
				nes A-10 thru J-3	30		
Part No. For		Torsional	Load Cap	pacity (2)	+0		
Single End	Diameter	Spring			0005	±.003	
A-10 thru J-30		Rate (1)	Lc	Lt	Diameter	A	В
A-10		.0003	.95	3.80			
A-20	1/8	.0018	8.90	12.70	.1250	.200	.088
A-30		.0148	25.30	25.30			
B-10		.0004	1.40	5.60			
B-20	5/32	.0037	13.70	19.60	.1562	.250	.114
B-30	0/02	.0296	39.30	39.30	.1002	.200	.111
C-10		.0007	2.00	7.80			
C-20	3/16	.0060	19.50	27.90	.1875	.300	.136
C-30	3/10	.0482	55.80	55.80	.1075	.500	.130
D-10		.0018	3.60	14.20			
D-20	1/4	.0148	35.00	50.00	.250	.400	.184
D-30		.1185	100.00	100.00			
E-10		.0037	5.70	22.80			
E-20	5/16	.0296	55.00	78.60	.3125	.500	.232
E-30		.2367	157.10	157.10			
F-10		.0065	8.40	33.60			
F-20	3/8	.0482	79.10	113.00	.3750	.600	.279
F-30		.4002	226.00	226.00			
G-10		.0148	14.40	57.40			
G-20	1/2	.1185	140.00	200.00	.5000	.800	.374
G-30		.9486	400.00	400.00			
H-10		.0296	23.00	92.00			
H-20	5/8	.2367	221.10	315.80	.6250	1.000	.469
H-30		1.8940	631.50	631.50			
I-10		.0482	32.40	129.40			
I-20	3/4	.4002	317.20	453.10	.7500	1.200	.564
I-30	<i>O</i> , 1	3.2610	906.10	906.10	550	1.200	.551
J-10	1	.1185	59.20	236.60	1.000	1.600	.764
J-20 J-30	1	.9486 7.8023	566.30 1616.00	809.00 1616.00	1.000	1.600	.704
J-30		7.0023	1010.00	1010.00			

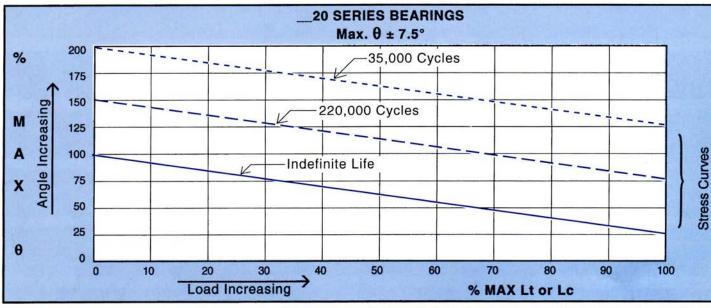
(1) Torsional Spring rates: Lb-In/Degree rates of standard C-Flex bearings generally fall within $\pm 10\%$ of these values at zero load. Contact C-Flex if specific spring rates or closer tolerances are required.

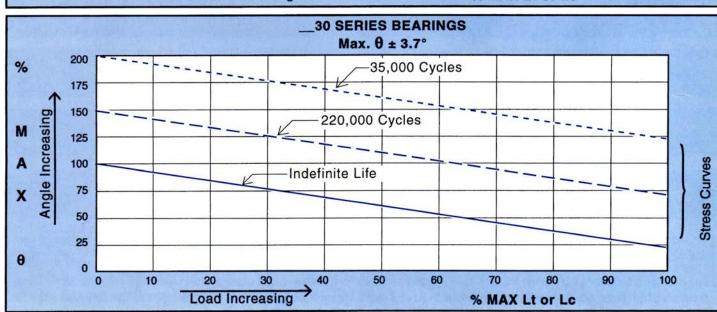
(2) Load Capacity: Lt or Lc (Pounds load in tension or compression) These values are maximum loading (weight or static force) at zero deflection. Load requirements, angular deflection, and cyclic life must be considered when sizing bearings. See life expectancy curves or contact C-Flex for assistance. Lc is pure radial load creating compressive stresses in the spring, while Lt is a pure radial load creating tensile stresses.

C-Flex Bearings Double End Bearing

Double End eries AD-10 thru JD-30


Series AD-10 thru JD-30											
Part No. For Double End AD-10 thru JD-30	Diameter	Torsional Spring Rate (1)	Load Cap Lc	Dacity (2)	+0 0005 Diameter	±.003 A	C min	D min			
AD-10		.0003	2.30	4.60							
AD-20	1/8	.0018	17.50	25.00	.1250	.200	.038	.070			
AD-30	-, -	.0148	28.00	28.00							
BD-10		.0004	3.50	7.00							
BD-20	5/32	.0037	28.00	40.00	.1562	.250	.050	.100			
BD-30		.0296	45.00	45.00							
CD-10		.0007	5.00	10.00							
CD-20	3/16	.0060	40.00	60.00	.1875	.300	.060	.120			
CD-30		.0482	63.00	63.00							
DD-10		.0018	9.00	18.00							
DD-20	1/4	.0148	70.00	100.00	.250	.400	.083	.165			
DD-30		.1185	115.00	115.00							
ED-10		.0037	14.00	28.00							
ED-20	5/16	.0296	110.00	150.00	.3125	.500	.105	.210			
ED-30		.2367	175.00	175.00							
FD-10		.0065	20.00	40.00							
FD-20	3/8	.0482	160.00	220.00	.3750	.600	.128	.255			
FD-30		.4002	250.00	250.00							
GD-10		.0148	35.00	70.00							
GD-20	1/2	.1185	280.00	380.00	.5000	.800	.173	.345			
GD-30		.9486	450.00	450.00							
HD-10		.0296	55.00	110.00							
HD-20	5/8	.2367	450.00	620.00	.6250	1.000	.210	.430			
HD-30		1.8940	700.00	700.00							
ID-10		.0482	80.00	160.00							
ID-20	3/4	.4002	630.00	900.00	.7500	1.200	.263	.520			
ID-30		3.2610	1000.00	1000.00							
JD-10		.1185	140.00	280.00							
JD-20	1	.9486	1100.00	1500.00	1.000	1.600	.363	.720			
JD-30		7.8023	1800.00	1800.00							
						1.00/ 6.11					


(1) Torsional Spring rates: Lb-In/Degree rates of standard C-Flex bearings generally fall within $\pm 10\%$ of these values at zero load. Contact C-Flex if specific spring rates or closer tolerances are required.


(2) Load Capacity: Lt or Lc (Pounds load in tension or compression) These values are maximum loading (weight or static force) at zero deflection. Load requirements, angular deflection, and cyclic life must be considered when sizing bearings. See life expectancy curves or contact C-Flex for assistance. Lc is pure radial load creating compressive stresses in the spring, while Lt is a pure radial load creating tensile stresses.

Life Expectancy for Torsional Spring Rates (10, 20, 30)

* MAX θ = (Angle of Deflection) = The deflection angle from the null position. Positive or Negative.

TECHNICAL DATA

Torsional Spring Rate/Load Capacity

The torsional spring rate and load capacity of C-Flex bearings is dependent upon length, width, and thickness of the internal flat spring beams. High angles of rotation require thin springs to reduce bending stress and thereby result in low torsional spring rates and correspondingly small load capacities. Bearings with thin spring beams, such as the C-Flex Series 10 bearings, typically allow for rotation angles of up to +/- 15 degrees for indefinite life with light loads. In comparison, series 20 bearings which have a heavier spring and can accommodate heavier loads, are rated for rotation angles of +/- 7.5 degrees at zero load for indefinite life while the series 30, which are heavier still, are rated for +/- 3.7 degrees.

Geometric Centershift

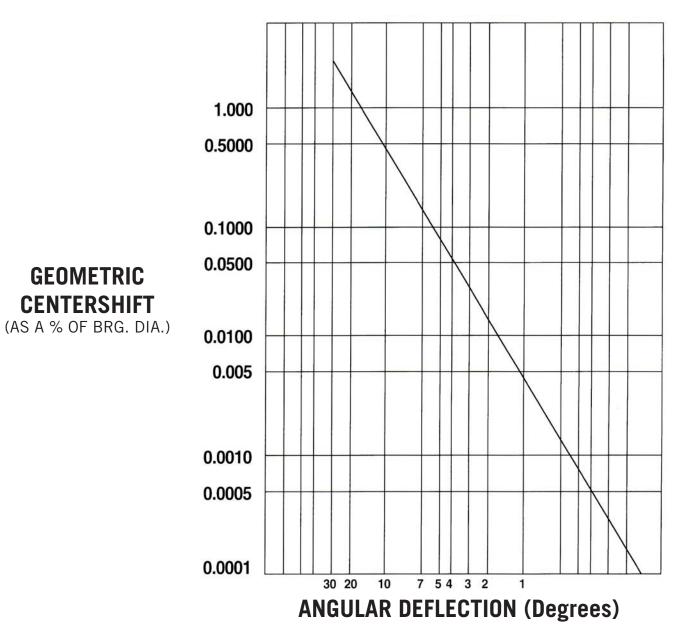
The rotation of the bearing sleeve segments is facilitated by bending of the flat spring beams which support them. This causes a slight radial shift of the sleeve segments relative to each other. For small angles of rotation, such as 2 degrees, the shift of geometric center of the rotated member will be minimal on the order of .02% of the bearing diameter, however increases to approximately 1% of the bearing diameter at a rotation of 15 degrees.

Cycle Life

The cycle life of C-Flex bearings is based upon the fatigue limit of the materials utilized for the spring beams. Bending and load stresses are considered in determining performance ratings which will statistically result in an infinite cycle life.

The flexure design is suitable for a variety of materials such as stainless steels of the martinistic or precipitation hardening variety: inconel, hastelloy, and beryllium copper among others.

Linearity and Hysteresis


The linearity of the C-Flex bearing, measured as the rotational deflection of the pivot vs. the torque required to induce this deflection, is relatively constant for angles of rotation up to 15 degrees. Hysteresis in the C-Flex bearing is defined as the difference of null positions when the flexure is deflected to a plus angle and then relieved, and then deflected to a negative angle and then relieved. The null position after the plus direction compared with the null position after the minus deflection is the angle of hysteresis.

For additional questions/comments, please do not hesitate to contact us.

9

C-FLEX BEARING CENTERSHIFT

GEOMETRIC CENTERSHIFT VS. ANGULAR DEFLECTION

Frictionless Bearings • No Lubrication • Low Hysteresis • Easy Installation • Custom Design

THE BEARING SOLUTION

C-FLEX BEARINGS Radial and Axial Stiffness Properties

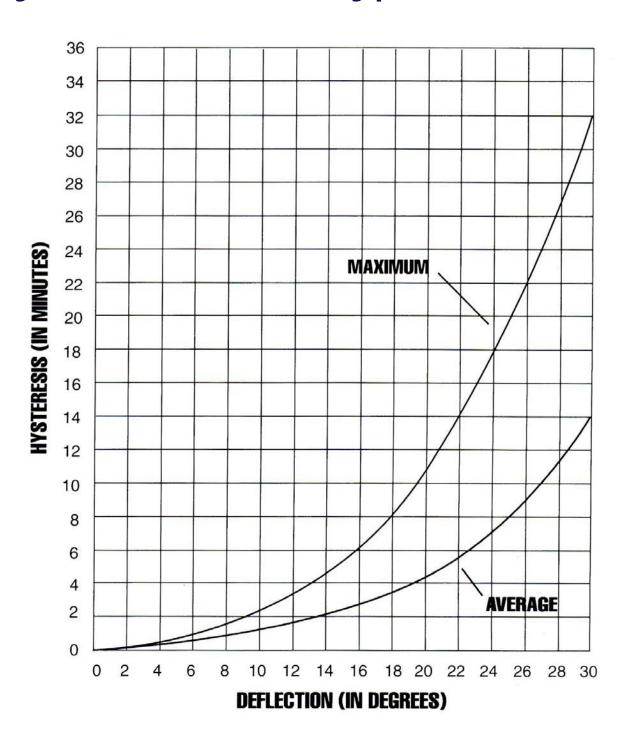
Note: Unless indicated, all values under load capacity apply to Cantilever Bearings Lc = Load in compression

Lt = Load in tension

BEARING		LOAD CAPACITY			RADIAL STIFFNESS*	
SERIES	Lc	Lt	Axial	Lc	Lt	Axial Stiffness
SERIES						
10	0.95	3.80	6.08	0.00050	0.00100	0.00050
20	8.90	12.70	12.70	0.00025	0.00050	0.00030
30	25.30	25.30	25.30	0.00017	0.00025	0.00030
SERIES						
10	1.40	5.60	8.96	0.00033	0.00050	0.00030
20	13.70	19.60	19.60	0.00017	0.00025	0.00020
30	39.30	39.30	39.30	0.00013	0.00017	0.00013
SERIES						
10	2.00	7.80	12.48	0.00025	0.00033	0.00025
20	19.50	27.90	27.90	0.00014	0.00017	0.00013
30	55.80	55.80	55.80	0.00009	0.00011	0.00008
SERIES						
10	3.60	14.20	22.72	0.00022	0.00020	0.00014
20	35.00	50.00	50.00	0.00010	0.00011	0.00008
30	100.00	100.00	100.00	0.00006	0.00008	0.00005
SERIES						
10	5.70	22.80	36.48	0.00014	0.00014	0.00010
20	55.00	78.60	78.60	0.00008	0.00008	0.00006
30	157.10	157.10	157.10	000005	0.00006	0.00004
SERIES						
10	8.40	33.60	53.76	0.00013	0.00008	0.00010
20	79.10	113.00	113.00	0.00007	0.00006	0.00006
30	226.00	226.00	226.00	0.00005	0.00003	0.00004
SERIES						
10	14.40	57.40	91.84	0.00010	0.00006	0.00008
20	140.00	200.00	200.00	0.00005	0.00003	0.00005
30	400.00	400.00	400.00	0.00003	0.00002	0.00003
SERIES						
10	23.00	92.00	147.20	0.00008	0.00005	0.00006
20	221.10	315.80	315.80	0.00004	0.00002	0.00003
30	631.50	631.50	631.50	0.00003	0.00002	0.00002
SERIES						
10	32.40	129.40	207.40	0.00006	0.00004	0.00005
20	317.20	453.10	453.10	0.00003	0.00002	0.00003
30	906.10	906.10	906.10	0.00002	0.00001	0.00002
SERIES						
10	59.20	236.60	378.88	0.00005	0.00003	0.00004
20	566.30	809.00	809.00	0.00002	0.00001	0.00002
30	1616.00	1616.00	1616.00	0.00001	0.00001	0.00001

^{1.} Stiffness of bearing is rated in inches of deflection per pound of load.

GEOMETRIC

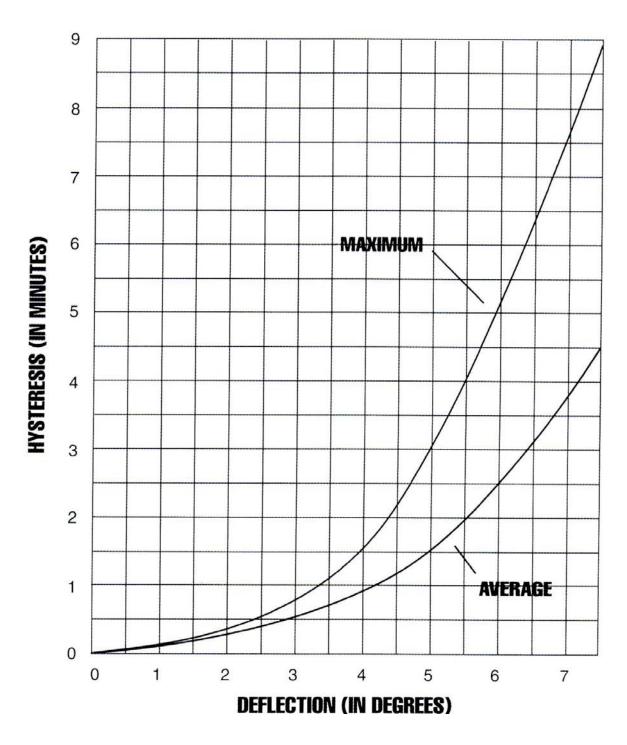

CENTERSHIFT

^{2. *}This data applies to standard cantilever bearings loaded at the mid-point of the unsupported half, at 0 degrees rotation.

^{3. *}The total stiffness of a pair of tandem mounted cantilevered bearings connected very stiffly in a mechanical system may be determined by dividing the above values by three.

^{4. *}For double ended bearings of the same sizes and types as above, divide the above radial stiffness values by two.

Hysteresis Curve Type 10 Bearing


Hysteresis in C-Flex bearings is defined as the difference of null positions when the bearing is deflected to a plus angle and then relieved, and then deflected to an equal minus angle and then relieved. The null position after the plus deflection compared with the null position after the minus deflection is the angle of hysteresis.

Hysteresis Curve Type 20 Bearing

Hysteresis in C-Flex bearings is defined as the difference of null positions when the bearing is deflected to a plus angle and then relieved, and then deflected to an equal minus angle and then relieved. The null position after the plus deflection compared with the null position after the minus deflection is the angle of hysteresis.

Hysteresis Curve Type 30 Bearing

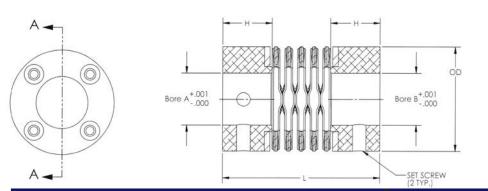
Hysteresis in C-Flex bearings is defined as the difference of null positions when the bearing is deflected to a plus angle and then relieved, and then deflected to an equal minus angle and then relieved. The null position after the plus deflection compared with the null position after the minus deflection is the angle of hysteresis.

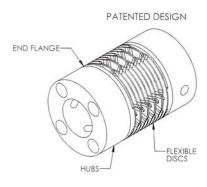
14

COUPLINGS

Designed to couple two rotating shafts together, C-Flex couplings can accommodate large misalignments while transmitting high torque loads with zero backlash. Their construction provides for a low moment of inertia and minimal impact upon system dynamics. A large through hole allows for smaller coupling utilization for fitting larger shafts and the fact that they can be disassembled prior to installation, makes them ideal for retrofit applications.

Constructed using high strength hardened stainless steel or glass impregnated polyamide flexures, the couplings require no maintenance, providing years of trouble-free life, even in contaminated environments. Directionally independent, they can provide the same torsional rigidity and offset capability regardless of the rotation direction.

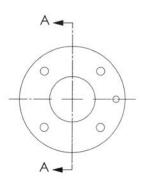

The use of C-Flex couplings in mechanical systems to connect rotating shafts will result in lower energy usage and bearing failure, since less stress is placed upon bearings. Misalignment forces on the bearings of a rotating system generates heat which is wasted energy. The use of C-Flex couplings will minimize these misalignment forces and result in a more energy efficient system.

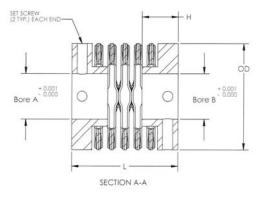

C-Flex couplings will provide superior technology at the lowest cost. Selection of the correct coupling for your application should result in exceptional long life, even in the most arduous environment.

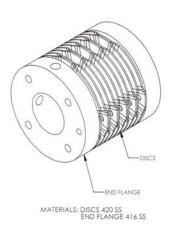
C-Flex couplings are normally provided with two set screws aligned at 90 degrees to each other for clamping to the shaft, however, they may be provided with C-Flex patent pending progressive clamp bushings, which will allow for secure mark free clamping of the coupling to a shaft. A collet style shaft locking design is presently under development for the lattice servo coupling and will be available soon.

Custom designs for greater torque capability, higher offsets, or special locating features can be provided upon request.

ENGLISH* C-FLEX LATTICE COUPLING

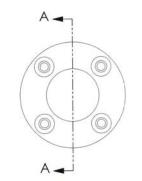


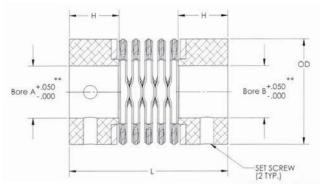

MATERIALS: DISCS 420 SS END FLANGE 416 SS HUBS 6061 ALUM.

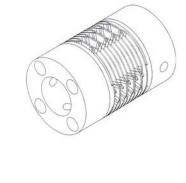

DIMENSIO	NAL SPEC	IFICATIO	NS					PERFORMAN	ICE SPECIFIC <i>i</i>	ATIONS			
P/N	OD	L	MIN* Bore A/B	MAX* Bore A/B	Н	SET SCREW SIZE	MAX Torque (LB*IN)	MAX RPM	MAX Angular Offset (Deg)	MAX Parallel Offset	MAX Axial Offset	WEIGHT (OZ.)	STATIC TORSIONAL STIFFNESS (LB*IN/ DEG)
500750	0.75	1.375	0.125	0.375	0.475	M4 X 0.7	12	10,000	7	0.01	0.02	0.74	11
501000	1	1.5	0.25	0.5	0.474	M4 X 0.7	24	7,500	7	0.015	0.025	1.41	27
501250	1.25	1.65	0.375	0.625	0.46	M5 X 0.8	48	7,500	7	0.015	0.03	2.16	51
501500	1.5	2.25	0.5	0.75	0.704	M6 X 1.0	75	5,000	7	0.02	0.03	4.35	89
501750	1.75	2.6	0.625	0.875	0.755	M6 X 1.0	135	5,000	7	0.02	0.04	6.69	135
502000	2	2.85	0.75	1	0.816	M8 X 1.25	180	3,750	7	0.025	0.05	9.92	205
502500	2.5	3.1	0.875	1.25	0.793	M8 X 1.25	300	3,750	7	0.025	0.05	16.45	395

*METRIC SIZES AVAILABLE

ENGLISH* C-FLEX LATTICE SERVO COUPLING

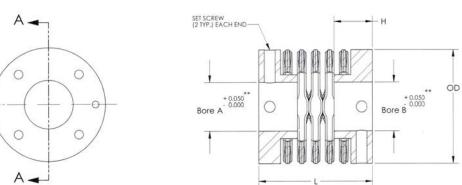


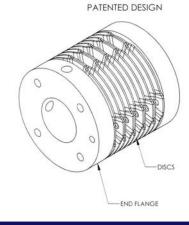




DIMENSIO	NAL SPEC	IFICATIO	NS					PERFORMAN	ICE SPECIFIC <i>i</i>	TIONS			
P/N	OD	L	MIN* Bore A/B	MAX* Bore A/B	Н	SET SCREW SIZE	MAX Torque (LB*IN)	MAX RPM	MAX Angular Offset (Deg)	MAX Parallel Offset	MAX Axial Offset	WEIGHT (OZ.)	STATIC TORSIONAL STIFFNESS (LB*IN/ DEG)
300750	0.75	0.75	0.125	0.375	0.24	M3 X 0.5	12	10,000	7	0.01	0.02	0.84	11
301000	1	1	0.25	0.5	0.345	M3 X 0.5	24	7,500	7	0.015	0.025	1.6	27
301250	1.25	1.25	0.375	0.625	0.535	M5 X 0.8	48	7,500	7	0.015	0.03	2.45	51
301500	1.5	1.5	0.5	0.75	0.505	M5 X 0.8	75	5,000	7	0.02	0.03	4.94	89
301750	1.75	1.75	0.625	0.875	0.55	M5 X 0.8	135	5,000	7	0.02	0.04	7.59	135
302000	2	2	0.75	1	0.555	M5 X 0.8	180	3,750	7	0.025	0.05	11.26	205
302500	2.5	2.5	0.875	1.25	0.615	M6 X 1.00	300	3,750	7	0.025	0.05	18.67	395

METRIC* C-FLEX LATTICE COUPLING

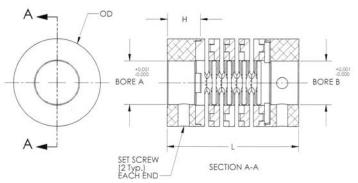


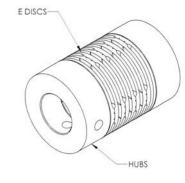

PATENTED DESIGN

MATERIALS: DISCS 420 SS END FLANGE 416 SS HUBS 6061 ALUM.

DIMENSIO	NAL SPEC	IFICATIO	NS					PERFORMAN	ICE SPECIFIC <i>i</i>	ATIONS			
P/N	OD	L	MIN* BORE A/B	MAX* BORE A/B	Н	SET SCREW SIZE	MAX Torque (N*m)	MAX RPM	MAX Angular Offset (Deg)	MAX Parallel Offset	MAX Axial Offset	WEIGHT (g)	STATIC TORSIONAL STIFFNESS (N*m/DEG)
600750	19	35	4	10	12	M4 X 0.7	1.4	10,000	7	0.25	0.51	21	1.2
601000	25.4	38	8	13	12	M4 X 0.7	2.8	7,500	7	0.38	0.63	40	3.1
601250	31.7	42	14	16	12	M5 X 0.8	5.6	7,500	7	0.38	0.76	61	5.8
601500	38.1	57	17	19	18	M6 X 1.0	8.5	5,000	7	0.51	0.76	123	10
601750	44.5	66	20	23	19	M6 X 1.0	15.3	5,000	7	0.51	1	190	15
602000	50.8	72	24	26	21	M8 X 1.25	20.5	3,750	7	0.63	1.25	281	23
602500	63.5	79	27	32	20	M8 X 1.25	34	3,750	7	0.63	1.25	466	45
*ENGLISH S	SIZES AVAII	LABLE				**STD. TOLER	RANCE	ALSO AVAILABLE IN H7 TOLERANCE					

METRIC*
C-FLEX LATTICE SERVO COUPLING



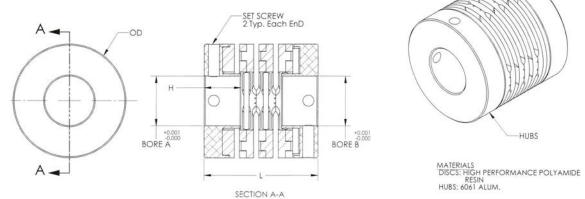

DIMENSIO	NAL SPEC	IFICATION	NS					PERFORMAN	ICE SPECIFICA	TIONS			
P/N	OD	L	MIN* BORE A/B	MAX* BORE A/B	Н	SET SCREW SIZE	MAX Torque (N*m)	MAX RPM	MAX Angular Offset (Deg)	MAX Parallel Offset	MAX AXIAL Offset	WEIGHT (g)	STATIC TORSIONAL STIFFNESS (N*m/DEG)
400750	19	19	4	10	6	M3 X 0.5	1.4	10,000	7	0.25	0.51	23.8	1.2
401000	25.4	25.4	8	13	8.7	M3 X 0.5	2.8	7,500	7	0.38	0.63	45.4	3.1
401250	31.7	31.7	14	16	13.6	M5 X 0.8	5.6	7,500	7	0.38	0.76	69.2	5.8
401500	38.1	38.1	17	19	12.8	M5 X 0.8	8.5	5,000	7	0.51	0.76	139.6	10
401750	44.5	44.5	20	23	14	M5 X 0.8	15.3	5,000	7	0.51	1	215.6	15
402000	50.8	50.8	24	26	14	M5 X 0.8	20.5	3,750	7	0.63	1.25	319	23
402500	63.5	63.5	27	32	15.6	M6 X 1.00	34	3,750	7	0.63	1.25	529	45

*ENGLISH SIZES AVAILABLE **STD. TOLERANCE ALSO AVAILABLE IN H7 TOLERANCE

16

ENGLISH* C-FLEX SUPERPLASTIC LATTICE COUPLING

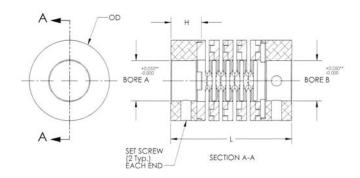
MATERIALS: DISCS: HIGH PERFORMANCE POLYAMIDE RESIN HUBS: 6061 ALUM.

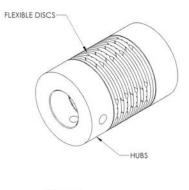

-HUBS

FLEXIBLE DISCS-

DIMENSIO	NAL SPEC	IFICATIO	NS					PERFORMAN	ICE SPECIFIC <i>i</i>	TIONS			
P/N	OD	L	MIN* BORE A/B	MAX* BORE A/B	Н	SET SCREW SIZE	MAX Torque (LB*IN)	MAX RPM	MAX Angular Offset (Deg)	MAX Parallel Offset	MAX Axial Offset	WEIGHT (OZ.)	STATIC TORSIONAL STIFFNESS (LB*IN/DEG)
540500	0.5	0.85	0.125	0.25	0.234	M3 X 0.5	5	10,000	7	0.005	0.008	0.55	1.0
541000	1	1.5	0.25	0.5	0.381	M4 X 0.7	20	7,500	7	0.008	0.012	0.93	8.3
541500	1.5	2.2	0.375	0.75	0.548	M5 X 0.8	50	5,000	7	0.01	0.018	3.1	28
542000	2	2.75	0.5	1	0.639	M6 X 1.0	120	3,750	7	0.01	0.02	6.98	67
542500	2.5	3.25	0.625	1.25	0.711	M8 X 1.25	200	3,750	7	0.01	0.02	11.63	129

*METRIC SIZES AVAILABLE

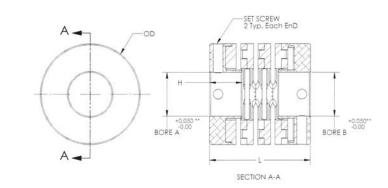

ENGLISH* C-FLEX SUPERPLASTIC LATTICE SERVO COUPLING

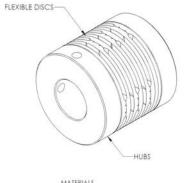


DIMENSIO	NAL SPEC	IFICATION	NS					PERFORMAN	ICE SPECIFICA	TIONS			
P/N	OD	L	MIN* BORE A/B	MAX* Bore A/B	Н	SET SCREW SIZE	MAX Torque (LB*IN)	MAX RPM	MAX Angular Offset (Deg)	MAX Parallel Offset	MAX AXIAL Offset	WEIGHT (OZ.)	STATIC TORSIONAL STIFFNESS (LB*IN/DEG)
340500	0.5	0.625	0.125	0.187	0.272	M3 X 0.5	5	10,000	5	0.003	0.006	0.3	1.5
341000	1	1	0.25	0.437	0.325	M4 X 0.7	20	7,500	5	0.005	0.008	0.5	12
341500	1.5	1.5	0.375	0.625	0.525	M5 X 0.8	50	5,000	5	0.007	0.013	1.67	40
342000	2	2	0.5	0.75	0.625	M6 X 1.0	120	3,750	5	0.007	0.014	3.75	90
342500	2.5	2.5	0.625	1	0.75	M8 X 1.25	200	3,750	5	0.007	0.014	6.25	175

*METRIC SIZES AVAILABLE

METRIC* C-FLEX SUPERPLASTIC LATTICE COUPLING


DIMENSIO	NAL SPEC	IFICATIO	NS					PERFORMAN	ICE SPECIFICA	ATIONS			
P/N	OD	L	MIN* Bore A/B	MAX* Bore A/B	Н	SET SCREW SIZE	MAX Torque (N*m)	MAX RPM	MAX ANGULAR OFFSET (DEG)	MAX Parallel Offset	MAX AXIAL Offset	WEIGHT (g)	STATIC TORSIONAL STIFFNESS (N*m/DEG)
640500	12.7	21.6	4	6	5.9	M3 X 0.5	0.6	10,000	7	0.13	0.2	15.6	0.11
641000	25.4	38.1	6	12	9.7	M4 X 0.7	2.3	7,500	7	0.2	0.3	26.3	2.0
641500	38.1	55.9	10	19	14	M5 X 0.8	5.7	5,000	7	0.25	0.46	87.9	3.2
642000	50.8	69.8	13	25	16.2	M6 X 1.0	13.6	3,750	7	0.25	0.51	198	7.6
642500	63.5	82.6	16	32	18	M8 X 1.25	22.6	3,750	7	0.25	0.51	330	14.6

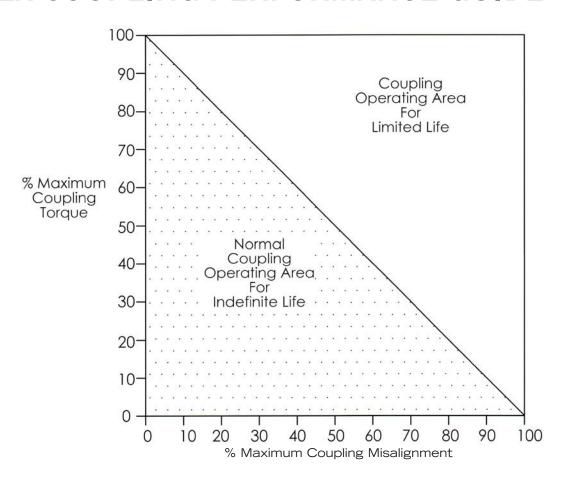

*ENGLISH SIZES AVAILABLE

**STD. TOLERANCE

ALSO AVAILABLE IN H7 TOLERANCE

METRIC* C-FLEX SUPERPLASTIC LATTICE SERVO COUPLING

MATERIALS DISCS: HIGH PERFORMANCE POLYAMIDE RESIN HUBS: 6061 ALUM.


DIMENSIO	NAL SPEC	IFICATIO	NS					PERFORMAN	ICE SPECIFICA	TIONS			
P/N	OD	L	MIN* BORE A/B	MAX* BORE A/B	Н	SET SCREW SIZE	MAX Torque (N*m)	MAX RPM	MAX ANGULAR OFFSET (DEG)	MAX Parallel Offset	MAX Axial Offset	WEIGHT (g)	STATIC TORSIONAL STIFFNESS (N*m/DEG)
440500	12.7	15.9	4	5	7	M3 X 0.5	0.6	10,000	5	0.08	0.15	8.5	0.17
441000	25.4	25.4	6	11	8.3	M4 X 0.7	2.3	7,500	5	0.13	0.2	14.2	1.4
441500	38.1	38.1	10	16	13.3	M5 X 0.8	5.7	5,000	5	0.18	0.33	47.3	4.5
442000	50.8	50.8	13	19	15.9	M6 X 1.0	13.6	3,750	5	0.18	0.36	106	10.2
442500	63.5	63.5	16	25	19	M8 X 1.25	22.6	3,750	5	0.18	0.36	177	20.0

*ENGLISH SIZES AVAILABLE

**STD. TOLERANCE

ALSO AVAILABLE IN H7 TOLERANCE

C-FLEX COUPLING PERFORMANCE GUIDE

- 1. Calculate % Maximum Parallel Misalignment
 - = Max. expected parallel misalignment/ Coupling Max. parallel misalignment capacity
- 2. Calculate % Maximum Axial Misalignment
 - = Max. expected axial misalignment/ Coupling Max. axial misalignment capacity
- 3. Calculate % Maximum Angular Misalignment
 - = Max. expected angular misalignment/ Coupling Max. angular misalignment capacity
- 4. Determine % Maximum Coupling Misalignment
 - = % Max Parallel Misalignment + % Max Axial Misalignment + % Max Angular Misalignment

EXAMPLE: An application for a 2" coupling will have the following possible misalignments:

Parallel: 0.002", axial: 0.005", angular: 2 deg.

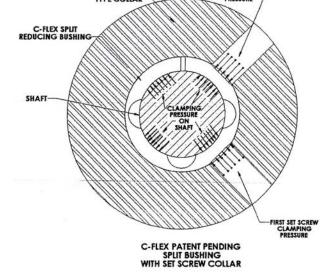
Calculating the Total Maximum Coupling Misalignment:

20

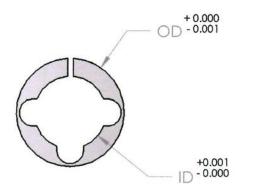
Parallel: 0.002"/ 0.025" = 8%
Axial: 0.005"/ 0.050" = 10%
Angular: 2 deg. / 7 deg. = 29%
Total Maximum Coupling Misalignment = 47%

Referring to the Coupling Performance Guide Chart, this gives a maximum continuous torque capacity for indefinite life of 95 lb-in (180 lb-in x 0.53). If this performance rating is not sufficient, pick another size coupling and re-calculate.

C-FLEX PROGRESSIVE CLAMP BUSHINGS


- HARDENED STAINLESS STEEL
- PATENT PENDING DESIGN
- DESIGNED FOR USE WITH STD. TWO SET SCREW COLLAR (90 DEG. OFFSET)
- WILL NOT MARK SHAFT
- AVAILABLE IN METRIC OR ENGLISH
- 25% GREATER HOLDING POWER THAN STD. SPLIT COLLAR

The C-Flex patent pending progressive clamp bushing, utilizes force multiplying technology to generate large clamping forces with multi-surface contact.


Proper sequential clamping is required to achieve optimum results. (First, fully tighten collar set screw onto first bushing clamping surface, then tighten second collar set screw onto second bushing clamping surface.)

PROGRESSIVE CLAMP BUSHINGS

SPECIFICATIONS

P/N	OD	LENGTH	ID
105001	0.250"	0.221"	0.125"
105002	0.250"	0.221"	0.1563"
105003	0.250"	0.221"	0.1875"
105004	0.250"	0.221"	4 mm
105005	0.250"	0.221"	5 mm
110001	0.500"	0.449"	0.250"
110002	0.500"	0.449"	0.3125"
110003	0.500"	0.449"	0.375"
110004	0.500"	0.449"	6 mm
110005	0.500"	0.449"	8 mm
110006	0.500"	0.449"	10 mm
112501	0.625"	0.460"	0.5625"
112502	0.625"	0.460"	0.500"
112503	0.625"	0.460"	0.4375"
112504	0.625"	0.460"	14 mm
112505	0.625"	0.460"	12 mm
112506	0.625"	0.460"	10 mm
115001	0.750"	0.646"	0.500"
115002	0.750"	0.646"	0.625"
115003	0.750"	0.646"	0.6875"
115004	0.750"	0.646"	12 mm
115005	0.750"	0.646"	16 mm
115006	0.750"	0.646"	0.375"

P/N	OD	LENGTH	ID
175001	0.875"	0.755"	0.750"
175002	0.875"	0.755"	0.6875"
175003	0.875"	0.755"	0.6250"
175004	0.875"	0.755"	18 mm
175005	0.875"	0.755"	16 mm
175006	0.875"	0.755"	14 mm
120001	1.000"	0.773"	0.750"
120002	1.000"	0.773"	0.8125"
120003	1.000"	0.773"	0.875"
120004	1.000"	0.773"	18 mm
120005	1.000"	0.773"	20 mm
120006	1.000"	0.773"	0.625"
125001	1.250"	0.793"	1.000"
125002	1.250"	0.793"	1.062"
125003	1.250"	0.793"	1.125"
125004	1.250"	0.793"	24 mm
125005	1.250"	0.793"	25 mm

SOLID CAD MODELS

Want to see a solid model of a C-Flex bearing or coupling? Find downloadable solid models for all C-Flex products online!

Our catalog of solid models is available on TraceParts. For Engineering CAD files, go to: www.tracepartsonline.net.
Click on CATALOGS and enter "C-FLEX" into the search field. Click the C-FLEX logo to open the catalog.

For general catalog information direct from our website, you can download PDF files at www.c-flex.com/brochures.html.

C-FLEX BEARING CO., INC. 104 INDUSTRIAL DRIVE FRANKFORT, NY 13340 TEL: 315-895-7454

FAX: 315-895-7268

www.C-Flex.com

E-MAIL: cflex@C-Flex.com

