LOCK C CONCRETE

CONCEALED HOOK TIMBER-TO-CONCRETE CONNECTOR

SIMPLE

Quick installation on concrete. Easy to hook system with screw-in anchors on the concrete side and self-drilling screws on the wood side.

REMOVABLE

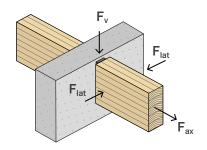
Thanks to the hooking system, the wooden beams can be easily removed for seasonal requirements.

OUTDOOR

They can be used outdoors in SC3 in the absence of aggressive conditions. The correct choice of screw enables all fastening requirements to be met.

USA, Canada and more design values available online.

SERVICE CLASS


For information on the application areas of with reference to environment service class, atmospheric corrosivity class and timber corrosion class, refer to the website www.rothoblaas.com.

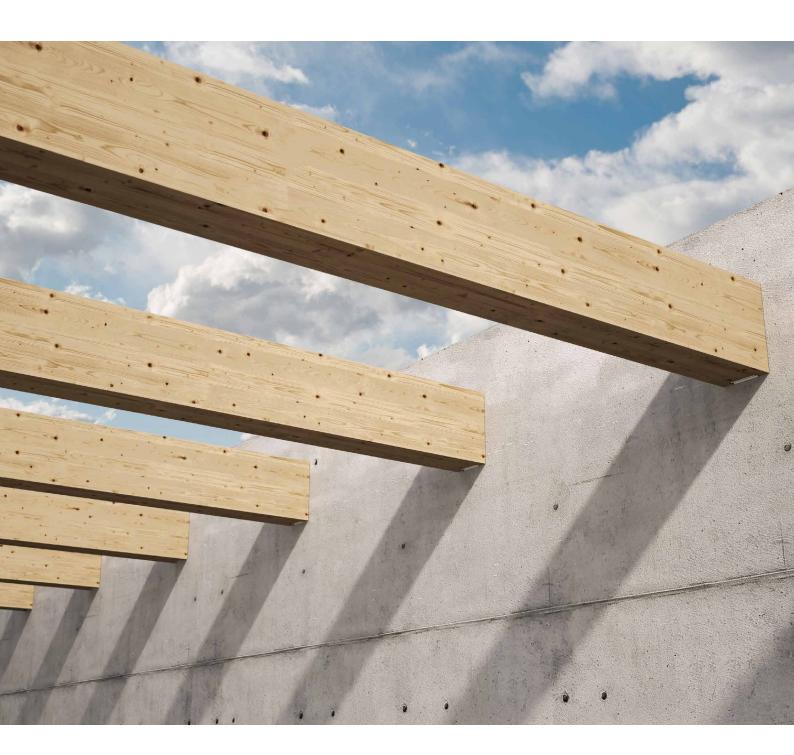
MATERIAL

EN AW-6005A aluminium alloy

EXTERNAL LOADS

VIDEO

Scan the QR Code and watch the video on our YouTube channel

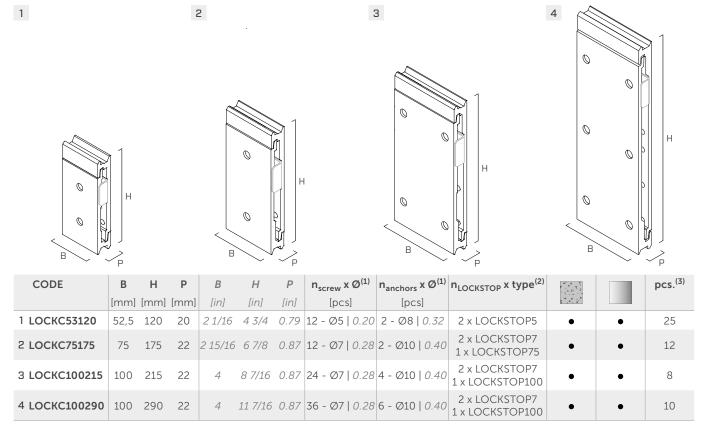


FIELDS OF USE

Concealed beam joint in timber-to-concrete or timber-to-steel configuration, suitable for gazebos, floors or roofs. Use also outdoors in non aggressive environments.

Can be applied to:

- solid timber softwood and hardwood
- glulam, LVL

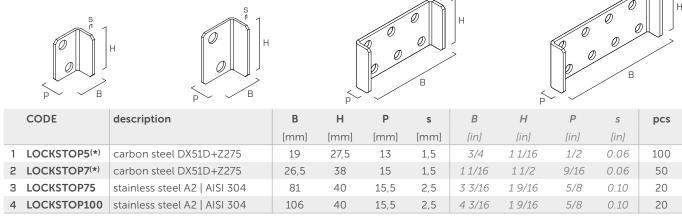

HYBRID STRUCTURES

Specially designed for fastening timber beams to concrete or steel supports. Ideal for hybrid structures.

TIMBER-TO-CONCRETE

Ideal for the construction of roofs or pergolas near concrete supports. Concealed fastening and easy to install.

CODES AND DIMENSIONS



Screws, anchors and LOCK STOP not included in the package. $\stackrel{(1)}{\sim}$ Number of screws and anchors for connector pairs.

2

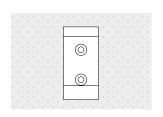
1

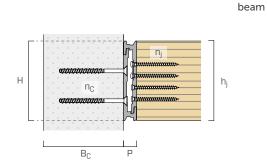
LOCK STOP | LOCKING DEVICE FOR Flat

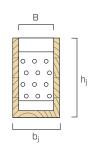
3

FASTENERS

type	description		d	support	page
			[mm]		
LBS	round head screw	()************************************	5-7	2)))))	571
LBS EVO	C4 EVO round head screw	()************************************	5-7		571
LBS HARDWOOD	round head screw on hardwoods		5		572
LBS HARDWOOD EVO	C4 EVO round head screw on hardwoods		5-7		572
HBS PLATE EVO	C4 EVO pan head screw	3311111111111	5-6		573
KKF AISI410	pan head screw	*************************************	5-6		574
SKS	screw-in anchor	driptinintinintala.	8-10		528

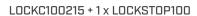

⁽²⁾ The LOCK STOP installation options are indicated on page 45.

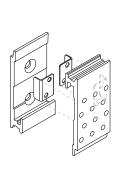

⁽³⁾ Number of connector pairs.

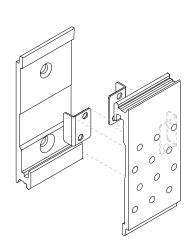

^(*) Not holding CE marking

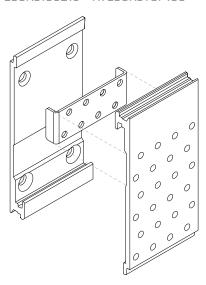
INSTALLATION

wall

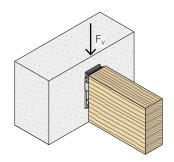



connector		CONC	RETE			
		SKS anchors		LBS screws		
	BxH	n _c - Ø x L	B _C	n _j - Ø x L	b _j x h _j	
					with pre-drilling hole	without pre-drilled hole
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
LOCKC53120	52,5 x 120	2 - Ø8 x 100	120	12 - Ø5 x 50	70 x 120	78 x 120
LOCKC55120	52,5 X 120	2 - Ø6 X 100	120	12 - Ø5 x 70	70 X 120	76 X 120
LOCKC75175	75 x 175	2 - Ø10 x 100	120	12 - Ø7 x 80	99 x 175	105 x 175
LOCKC100215	100 x 215	4 - Ø10 x 100	120	24 - Ø7 x 80	124 x 215	130 x 215
LOCKC100290	100 x 290	6 - Ø10 x 100	120	36 - Ø7 x 80	124 x 290	130 x 290

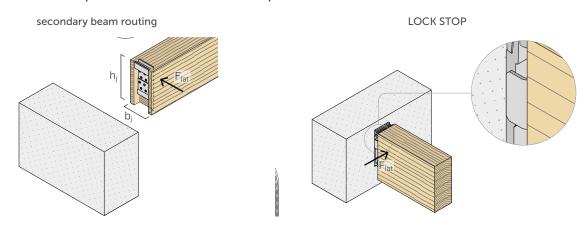

■ INSTALLATION | LOCK STOP ON LOCK C


LOCKC53120 + 2 x LOCKSTOP5

LOCKC75175 + 2 x LOCKSTOP7



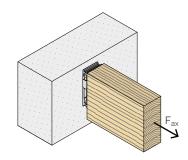
LOCK STOP| assembly


connector		assembly configurations						
	BxH	LOCKSTOP5 LOCKSTOP7		LOCKSTOP75	LOCKSTOP100			
	[mm]	[pcs]	[pcs]	[pcs]	[pcs]			
LOCKC53120	52,5 x 120	x 2	-	-	-			
LOCKC75175	75 x 175	-	x 2	x 1	-			
LOCKC100215	100 x 215	-	x 2	-	x 1			
LOCKC100290	100 x 290	-	x 2	-	x 1			

■ STRUCTURAL VALUES | TIMBER-TO-CONCRETE | F_V

connector		fasteners	R _{v,k timber}		R _{v,k alu}	fasteners	R _{v,d concrete}	
		LBS screws					SKS anchors	
	BxH	n _j - Ø x L	C24	GL24h	LVL		n _c - Ø x L	
	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]	[mm]	[kN]
LOCKC53120	E2 E v 120	12 - Ø5x50	13,8	15,0	15,4	30	2 - Ø8x100	0.2
LOCKC55120		12 - Ø5x70	17,1	17,9	17,8	30	2 - Ø8X100	9,2
LOCKC75175	75 x 175	12 - Ø7x80	30,2	32,2	31,4	60	2 - Ø10x100	19,6
LOCKC100215	100 x 215	24 - Ø7x80	60,5	64,5	62,8	80	4 - Ø10x100	33,3
LOCKC100290	100 x 290	36 - Ø7x80	90,7	96,7	94,2	96	6 - Ø10x100	42,8

■ STRUCTURAL VALUES | TIMBER-TO-CONCRETE | F_{lat}



			secondary beam routing		LOCK STOP			
connector		fasteners	R _{lat,k timber}		R _{lat,k steel}		fasteners	R _{lat,d concrete}
		LBS screws					SKS anchors	
	BxH	n _j - Ø x L	b _j x h _j	C24	n _{LOCKSTOP} x type		n _c - Ø x L	
	[mm]	[mm]	[mm]	[kN]	[mm]	[kN]	[mm]	[kN]
LOCKC53120	52,5 x 120	12 - Ø5x50	100 x 120	3,7	2 x LOCKSTOP5	0,5	2 - Ø8x100	8,6
LOCKC75175	75 x 175	12 - Ø7x80	120 x 175	5,9	2 x LOCKSTOP7	0,3	2 - Ø10x100	18,7
LOCKC/31/3	/3 X 1/3	12 - Ø/X80	120 X 1/3	5,9	1 x LOCKSTOP75	0,8	2 - Ø10X100	18,7
LOCKC100215	100 x 215	24 - Ø7x80	140 x 215	7,1	2 x LOCKSTOP7	0,3	4 - Ø10x100	35,0
LOCKC100215	100 X 213	24 - Ø/X80	140 X 213	7,1	1 x LOCKSTOP100	0,8	4 - Ø10x100	35,0
LOCKC100290	100 x 290	36 - Ø7x80	140 x 290	9,7	2 x LOCKSTOP7	0,3	6 - Ø10x100	77.1
LOCKC100290	100 X 290	30 - W/X8U	140 X 290	3,/	1 x LOCKSTOP100	0,8	0 - MIOXIOO	33,1

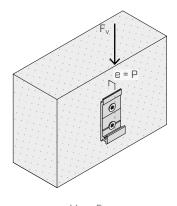
GENERAL PRINCIPLES

For the GENERAL PRINCIPLES of calculation, see page 49.

STRUCTURAL VALUES | TIMBER-TO-CONCRETE | Fax

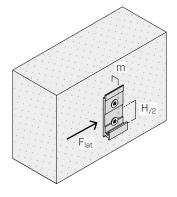
connector		fasteners LBS screws	R _{ax,k timber}		ax,k timber		R _{ax,k alu}	fasteners SKS anchors	R _{ax,d concrete}
	BxH	n _j - Ø x L	C24	GL24h		n _c - Ø x L			
	[mm]	[mm]	[kN]	[kN]	[kN]	[mm]	[kN]		
LOCKC53120	52,5 x 120	12 - Ø5x50	4,4	4,8	6,9	2 - Ø8x100	10,8		
LOCKC75175	75 x 175	12 - Ø7x80	9,3	10,0	9,8	2 - Ø10x100	17,7		
LOCKC100215	100 x 215	24 - Ø7x80	12,2	13,2	12,0	4 - Ø10x100	26,1		
LOCKC100290	100 x 290	36 - Ø7x80	12,9	13,9	12,6	6 - Ø10x100	31,5		

GENERAL PRINCIPLES

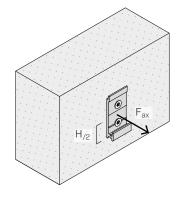

For the GENERAL PRINCIPLES of calculation, see page 49.

DESIGN OF ALTERNATE FASTENERS AND ANCHORS

For fastening with anchors other than those indicated in the table, the calculation on concrete may be performed with reference to the ETA of the chosen anchor and the diagrams below.


In the same way, the calculation of fasteners on steel can be carried out in accordance with national design standards for steel structures, following the diagrams below.

The LOCK connector and the group of anchors must be verified as follows:


 $V_d = F_{v,d}$

$$M_d = e \cdot F_{v,d}$$

 $V_{lat,d} = F_{lat,d}$

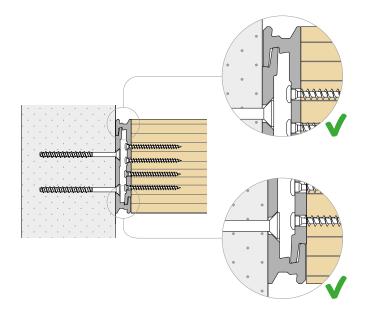
$$M_{lat,d} = m \cdot F_{lat,d}$$

 $V_{ax,d} = F_{ax,d}$

where:

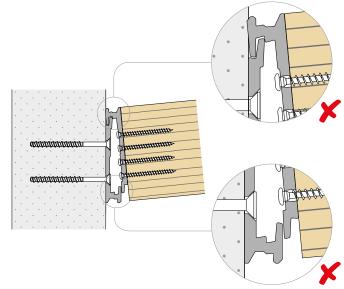
• e = 20 mm

for LOCKC53120

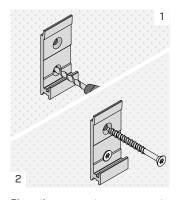

• e = 22 mm for LOCKC75175, LOCKC100215 and LOCKC100290 for LOCKC53120, LOCKC75175, LOCKC100215 and LOCKC100290 • $m = 6 \, mm$

 H LOCK C connector height

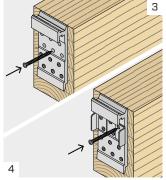
INSTALLATION METHODS


CORRECT INSTALLATION

Install the beam by lowering it from the top, without tilting it. Ensure proper seating and coupling of the connector at both the top and bottom, as shown in the figure.

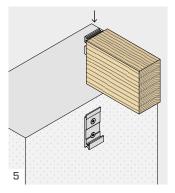

INCORRECT INSTALLATION

Partial and incorrect coupling of the connector. Ensure that both flanges of the connector are properly seated in their respective seats.

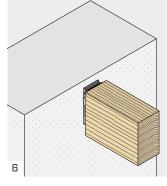


MOUNTING

EXPOSED INSTALLATION WITH LOCK STOP

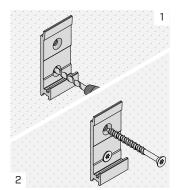


Place the connector on concrete and fasten the anchors according to the installation instructions.

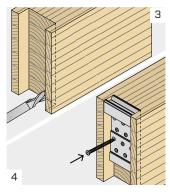


Place the connector on the secondary beam and fasten the lower screws.

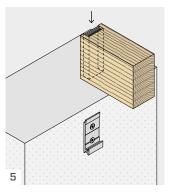
When using LOCK STOP, position LOCK STOP and fasten the remaining screws.

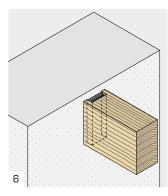


Hang the secondary beam from the main member by lowering it into place.



Make sure that the two LOCK connectors are parallel to each other and avoid subjecting them to excessive strain during installation.


SEMI-CONCEALED INSTALLATION - CONNECTOR VISIBLE FROM BELOW


Place the connector on concrete and fasten the anchors according to the installation instructions.

Perform full routing on the secondary beam. Position the connector and fasten all screws.

Hang the secondary beam from the main member by lowering it into place.

Make sure that the two LOCK connectors are parallel to each other and avoid subjecting them to excessive strain during installation.

GENERAL PRINCIPLES

- Dimensioning and verification of concrete and timber elements must be carried out separately. In particular, it is recommended to perform a splitting check for loads perpendicular to the grain of timber elements
- The connector must always be fully fastened using all the holes.
- Fastening with partial nailing. Screws with the same length must be used for each connector half.
- Pre-drilling holes are not required for screws on secondary beam, with density $\rho_k \leq 420~kg/m^3$. The pre-drilling is mandatory on secondary beam with density $\rho_k > 420~kg/m^3$.
- In the calculation phase, a strength class of C25/30 concrete with thin reinforcement was considered, in the absence of spacing and distances from the edge and minimum thickness indicated in the installation tables. The strength values are valid for the calculation hypothesis defined in the table; for boundary conditions different from those in the table (e.g. minimum distances from the edge or different concrete thickness), the concrete strength must be calculated separately (see the DESIGN OF ALTERNATE FASTENERS AND ANCHORS section).
- The coefficients $k_{\mbox{mod}}$ and γ_M should be taken according to the current regulations used for the calculation.
- The following verification shall be satisfied for combined loading:

$$\left(\frac{F_{ax,d}}{R_{ax,d}}\right)^2 + \left(\frac{F_{v,d}}{R_{v,d}}\right)^2 + \left(\frac{F_{lat,d}}{R_{lat,d}}\right)^2 \le 1$$

STRUCTURAL VALUES | F_{lat}

- Characteristic values calculated according to EN 1995:2014 and ETA-19/0831 for screws without pre-drilling hole and C24 timber elements with density of
- Design values of concrete anchors are in accordance with ETA-24/0024.
- Design values can be obtained from characteristic values as follows: Routing in the secondary beam

$$R_{lat,d} = min \begin{cases} \frac{R_{lat,k \ timber} \cdot k_{mod}}{\gamma_{M}} \\ R_{lat,d \ concrete} \end{cases}$$

LOCK STOP

$$R_{lat,d} = min \begin{cases} \frac{R_{lat,k \text{ steel}}}{\gamma_{M2}} \\ R_{lat,d \text{ concrete}} \end{cases}$$

- γ_{M2} is the partial safety coefficient of steel material according to EN 1993-1-1.

STRUCTURAL VALUES | F_V | F_{ax}

- C24 and GL24h: values calculated according to EN 1995:2014 and ETA-19/0831 for screws without pre-drilling hole. $\rho_k=350~kg/m^3$ for C24 and $\rho_k=385~kg/m^3$ for GL24h have been considered for calculations.
- LVL: characteristic values calculated according to EN 1995:2014 and ETA-19/0831 for screws with pre-drilling hole. ρ_k = 480 kg/m³ has been taken in consideration in the calculation.
- · Design values of concrete anchors are in accordance with ETA-24/0024.
- Design values can be obtained from characteristic values as follows:

$$R_{v,d} = min \begin{cases} R_{v,d \ timber} = \frac{R_{v,k \ timber} \cdot k_{mod}}{\gamma_M} \\ R_{v,d \ alu} = \frac{R_{v,k \ alu}}{\gamma_{M2}} \\ R_{v,d \ concrete} \end{cases}$$

$$R_{ax,d} = min \begin{cases} R_{ax,d \ timber} = \frac{R_{ax,k \ timber} \cdot k_{mod}}{\gamma_M} \\ R_{ax,d \ alu} = \frac{R_{ax,k \ alu}}{\gamma_{M2}} \\ R_{ax,d \ concrete} \end{cases}$$

where:

 γ_{M2} is the partial safety coefficient of the aluminium material subject to tensile stress, to be taken according to the national standards used for calculation. If there are no other provisions, it is suggested to use the value provided by EN 1999-1-1, equal to γ_{M2} = 1.25.

CONNECTION STIFFNESS | F_V

Connection stiffness can be calculated according to ETA-19/0831, with the following equation:

$$K_{v,ser} = \frac{n \cdot \rho_m^{1.5} \cdot d^{0.8}}{30} \quad N/mm$$

- d is the nominal diameter of the screw in the secondary beam, in mm;
- $\rho_{\mbox{\scriptsize m}}$ is the average density of the secondary beam, in kg/m $^{3};$
- n is the number of screws in the secondary beam.

Discover how to design simply, quickly and intuitively!

MyProject is the practical and reliable software created for professionals who design timber structures: it allows for the design of a broad range or connections, carry out thermo-hygrometric analysis of opaque components and designing the most appropriate acoustic solution. The program provides detailed instructions and explanatory illustrations for the products installation.

Simplify your work, generate complete calculation reports thanks to MyProject.

Download it now and start designing!

rothoblaas.com

